```
Vadose Zone Hydrology - HYD210

1- Use the equation for the height of capillary rise (h):
\(h=\frac{2 \sigma \cos (\alpha)}{\rho_{w} g r}\)
where \(\sigma\) is surface tension \(\left[\mathrm{MT}^{-2}\right], \rho_{w}\) is the density of water \(\left[\mathrm{ML}^{-3}\right], \alpha\) is contact angle between solid and the air-water interface, g is the acceleration due to gravity \(\left[\mathrm{LT}^{-1}\right]\), and \(r\) is the radius of the capillary tube [L].
a. Given \(\alpha=0, \rho_{w}=998 \mathrm{~kg} \mathrm{~m}^{-3}, \sigma=7.27 \times 10^{-2} \mathrm{~N} \mathrm{~m}^{-1}\) (or \(\mathrm{kg} \mathrm{s}^{-2}\) ), and \(\mathrm{g}=9.81 \mathrm{~m} \mathrm{~s}^{-2}\) use the MS excel and plot the height of rise of water for cylinders with radius equal to \(0.001,0.005,0.01\), \(0.05,0.1,0.5\), and 1 mm .
b. Analyze and briefly explain the effect of the contact angle, \(\alpha\) and the temperature of water, \(T\) on the height of capillary rise, \(h\) by using the following values:
\begin{tabular}{|c|c|c|c|}
\hline\(\alpha\) (contact angle) & 0 & 45 & 90 \\
\hline\(T\left({ }^{\circ} \mathrm{C}\right)\) & 10 & 20 & 30 \\
\hline
\end{tabular}
[Hint_1: You should deliver with two graphs, each including three lines. In the first plot use \(\alpha=0\) and compare the effect of temperature of water, and in the second plot use \(T=20^{\circ} \mathrm{C}\) and compare the effect of contact angle. Use \(g=9.81 \mathrm{~m} \mathrm{~s}^{-2}\) ]
[Hint_2: Section 2.4 of chapter 1 of the text book can assist for better understanding of the concept]
```

Vadose Zone Hydrology - HYD210

2- Use van Genuchten-Mualem model:
$S_{e}=\left[1+(\alpha h)^{n}\right]^{-m}$
where S_{e} denotes the effective (relative) saturation (It is also called degree of saturation) [-], $S_{e}=\left(\theta-\theta_{r}\right) /\left(\theta_{s}-\theta_{r}\right)$, with θ_{s} and θ_{r} are the saturated and residual wetting fluid saturation $\left[\mathrm{L}^{3} \mathrm{~L}^{-3}\right]$, respectively; h is soil matric potential, $\alpha\left[\mathrm{L}^{-1}\right], n[-], l$ are fitting parameters, that are determined by the air entry value, the pore-size distribution, and the soil connectivity (also referred to tortuosity), respectively. It is also assumed that $m=1-1 / n$.

$$
\begin{equation*}
K_{r}=\frac{K\left(S_{e}\right)}{K_{s}}=S_{e}^{l}\left[1-\left(1-S_{e}^{\frac{1}{m}}\right)^{m}\right]^{2} \tag{2}
\end{equation*}
$$

where K_{s} denotes saturated hydraulic conductivity [$\mathrm{L} \mathrm{T}^{-1}$], K_{r} represent the relative hydraulic conductivity [-], $K\left(S_{e}\right)$ is the hydraulic conductivity at degree of saturation $\left[\mathrm{L} \mathrm{T}^{-1}\right]$, and $l=0.5[-]$. Given $\theta_{r}=0.1 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}, \theta_{s}=0.5 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}, n=2.0, K_{s}=1 \mathrm{~cm} \mathrm{~h}^{-1}$, and $\alpha=0.01 \mathrm{~cm}^{-1}$: (Choose the range of h from zero to 15000 cm)
a. Write computer program (MS Excel or any other programming language) to generate data points for $\theta(h)$ and $K(\theta)$;
b. Derive functional expression for $C(h)$;
(Note that $C=d \theta / d h$)
Use program of (a) to also generate data for $C(h)$
c. Plot curves for $S_{e}(h), C\left(S_{e}\right), K(h)$ and $K\left(S_{e}\right)$;
d. Analyze and briefly explain the effect of parameters α, n, and l on $S_{e}(h)$ and $K_{r}(h)$ by using the following values:

```
Vadose Zone Hydrology - HYD210
                        Problem set#1
Due: 04/05/2010
TA: Maziar Kandelous
(Before class starts)
\begin{tabular}{|c|c|c|c|}
\hline\(\alpha\) & 0.01 & 0.05 & 0.1 \\
\hline\(n\) & 1.5 & 3 & 5 \\
\hline\(l\) & 0.5 & -1 & 1 \\
\hline
\end{tabular}
[Hint_1: For both \(S_{e}(h)\) and \(K_{r}(h)\) you should generate three lines in each of three graphs. For example, keep \(\alpha\) and \(n\) constant and generate data points of \(S_{e}(h)\) and \(K_{r}(h)\) for different \(l\), then plot these data points in one graph.]
[Hint_2: Section 2.5 and 2.9.4 of chapter 1 of the text book can assist for better understanding of the concept]```

