1- Use the equation for the height of capillary rise (*h*):

$$h = \frac{2\sigma\cos(\alpha)}{\rho_w g r}$$

where σ is surface tension [MT⁻²], ρ_w is the density of water [ML⁻³], α is contact angle between solid and the air-water interface, g is the acceleration due to gravity [LT⁻¹], and r is the radius of the capillary tube [L].

- a. Given $\alpha = 0$, $\rho_w = 998$ kg m⁻³, $\sigma = 7.27 \times 10^{-2}$ N m⁻¹ (or kg s⁻²), and g = 9.81 m s⁻² use the MS excel and plot the height of rise of water for cylinders with radius equal to 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, and 1 mm.
- b. Analyze and briefly explain the effect of the contact angle, α and the temperature of water, *T* on the height of capillary rise, *h* by using the following values:

α (contact angle)	0	45	90
<i>T</i> (°C)	10	20	30

[Hint_1: You should deliver with two graphs, each including three lines. In the first plot use $\alpha = 0$ and compare the effect of temperature of water, and in the second plot use T = 20 ° C and compare the effect of contact angle. Use g = 9.81 m s⁻²]

[Hint_2: Section 2.4 of chapter 1 of the text book can assist for better understanding of the concept]

2- Use van Genuchten-Mualem model:

$$S_{e} = [1 + (\alpha h)^{n}]^{-m}$$
(1)

where S_e denotes the effective (relative) saturation (It is also called degree of saturation) [-], $S_e = (\theta - \theta_r)/(\theta_s - \theta_r)$, with θ_s and θ_r are the saturated and residual wetting fluid saturation [L³ L⁻³], respectively; *h* is soil matric potential, α [L⁻¹], *n*[-], *l* are fitting parameters, that are determined by the air entry value, the pore-size distribution, and the soil connectivity (also referred to tortuosity), respectively. It is also assumed that m = 1-1/n.

$$K_r = \frac{K(S_e)}{K_s} = S_e^{-l} [1 - (1 - S_e^{\frac{1}{m}})^m]^2$$
⁽²⁾

where K_s denotes saturated hydraulic conductivity [L T⁻¹], K_r represent the relative hydraulic conductivity [-], $K(S_e)$ is the hydraulic conductivity at degree of saturation [L T⁻¹], and l = 0.5 [-]. Given $\theta_r = 0.1$ cm³ cm⁻³, $\theta_s = 0.5$ cm³ cm⁻³, n = 2.0, $K_s = 1$ cm h⁻¹, and $\alpha = 0.01$ cm⁻¹: (Choose the range of *h* from zero to 15000 cm)

- a. Write computer program (MS Excel or any other programming language) to generate data points for $\theta(h)$ and $K(\theta)$;
- b. Derive functional expression for C(h); (Note that $C = d\theta/dh$)

Use program of (a) to also generate data for C(h)

- c. Plot curves for $S_e(h)$, $C(S_e)$, K(h) and $K(S_e)$;
- d. Analyze and briefly explain the effect of parameters α , *n*, and *l* on $S_e(h)$ and $K_r(h)$ by using the following values:

α	0.01	0.05	0.1
п	1.5	3	5
l	0.5	-1	1

[Hint_1: For both $S_e(h)$ and $K_r(h)$ you should generate three lines in each of three graphs. For example, keep α and *n* constant and generate data points of $S_e(h)$ and $K_r(h)$ for different *l*, then plot these data points in one graph.]

[Hint_2: Section 2.5 and 2.9.4 of chapter 1 of the text book can assist for better understanding of the concept]