Solute Transport Theory & Hydrus applications

Rien van Genuchten / Jan Hopmans

UC Davis

HYD 210

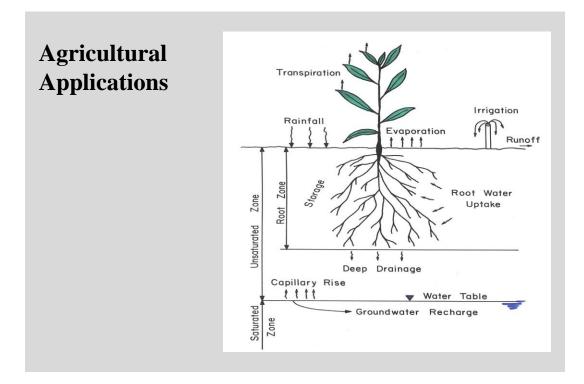
Davis, May - 2011

Outline

Introduction: Water Flow and Solute Transport

Solute Transport

- Governing transport equations
- Advection, diffusion, dispersion, reactions (ADE)
- Solute Break-Through Curves, Boundary conditions
 - Nonequilibrium transport (chemical, physical)
 - Decay chains

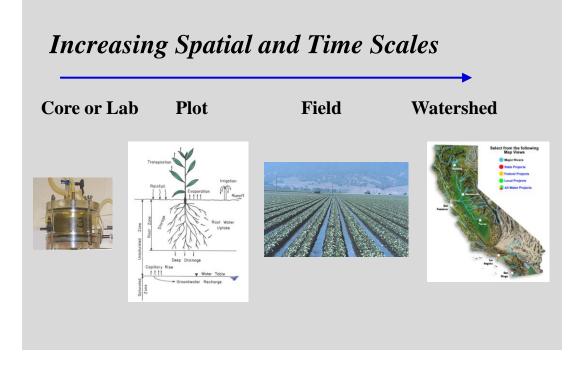


Agricultural and Other Contaminants

- Fertilizers (nitrogen, phosphorus, potassium)
- Pesticides (insecticides, fungicides, herbicides)
- Hormones (estrodial)
- Pharmaceuticals (antibiotics)
- Fumigants (methyl bromide)

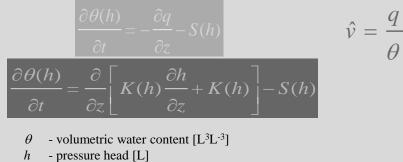
Salinization and reclamation of sodic soils

Other pollutants: Heavy metals, radionuclides, hydrocarbons, and many others



Water Flow - Richards Equation

Governing flow equation for one-dimensional isothermal flow in a variably saturated isotropic rigid porous medium:



- K unsaturated hydraulic conductivity [LT⁻¹]
- *z* vertical coordinate positive upward [L]
- t time [T]
- S root water uptake [T¹]

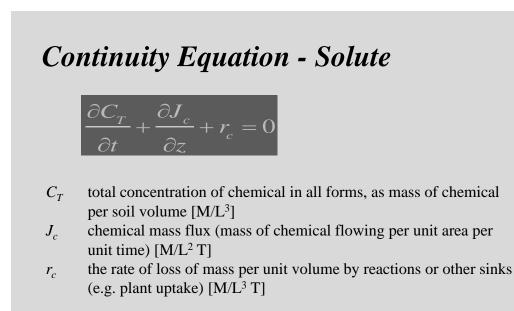
Solute Transport Advection-Dispersion Equation - Simplified

One-dimensional chemical transport during transient flow in a variably-saturated rigid porous medium

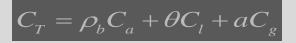
$$\frac{\partial(\theta c)}{\partial t} + \frac{\partial(\rho s)}{\partial t} = \frac{\partial}{\partial z} \left(\theta D \frac{\partial c}{\partial z} - qc\right) - r_{c}$$

- *c* solution concentration [ML⁻³]
- *s* adsorbed concentration [MM⁻¹]
- θ water content [L³L⁻³]
- ρ soil bulk density [ML⁻³]
- D dispersion coefficient [L²T¹]
- q volumetric flux [LT⁻¹]
- r_c rate constant representing reactions [ML⁻³T⁻¹]

HOW DOES IT COME ABOUT ??????



Total Solute Concentration



- C_a adsorbed concentration (mass per unit mass of dry soil), [M/M]
- dissolved concentration (mass per unit volume of soil solution), C_{l} $[M/L^3]$
- gaseous concentration (mass of chemical vapor per unit volume C_{a} of soil air), $[M/L^3]$
- bulk density of dry soil, [M/L³] ρ_h
- volumetric water content, $[L^3/L^3]$ θ
- volumetric air content, $[L^3/L^3]$ a

- chemical mass flux (mass of chemical being transported J_{c} per unit area per unit time) $[M/L^2 T]$
- solute liquid flux $[M/L^2 T]$ J_1
- flux of chemical vapor $[M/L^2 T]$ J_{g}

Fick's law for flux in gas phase: (Gaseous Diffusion only)

- gas diffusion coefficient in air D_{o}^{a}
- D_g^{s} ξ_g gas diffusion coefficient in soil
 - gaseous tortuosity factor

Total Solute Liquid Flux $- J_1$ [M/L³T]

Total Liquid Flux:

$$\boldsymbol{J}_l = \boldsymbol{J}_{lc} + \boldsymbol{J}_{lh} + \boldsymbol{J}_{ld}$$

- solute flux $[M/L^2 T]$ J_l
- J_{lc} liquid advective flux [M/L² T]
- hydrodynamic dispersion flux [M/L² T] J_{lh}
- liquid diffusion flux [M/L² T] J_{ld}

Diffusive flux:

Tortuosity:

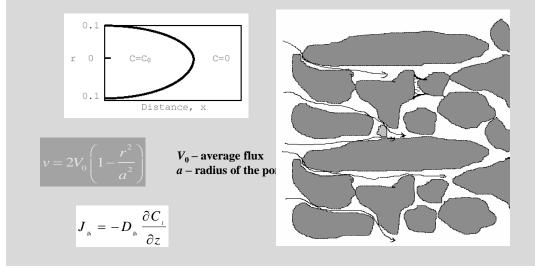
$$J_{l} = J_{lc} + J_{lh} + J_{ld}$$
$$J_{ld} = -\xi_{l}(\theta)D_{l}^{w}\frac{\partial C_{l}}{\partial z} = -D_{l}^{s}\frac{\partial C_{l}}{\partial z}$$
$$\xi_{l}(\theta) = \frac{\theta^{10/3}}{\theta_{s}^{2}}$$

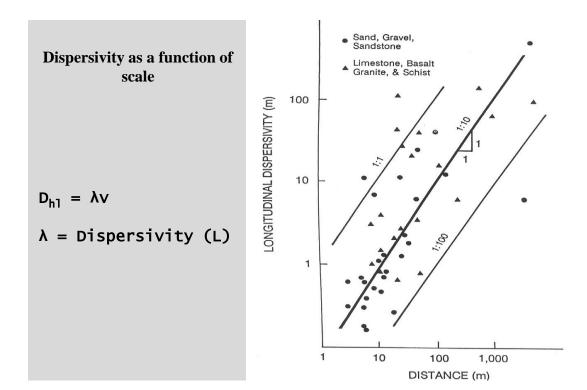
- liquid diffusion flux [M/L² T] J_{ld}
- liquid tortuosity factor [-]
- $\xi_l \\ D_l^w$ binary diffusion coefficient of the solute in water $[L^2/T]$
- soil liquid diffusion coefficient $[L^2/T]$ D_l^{s}
- θ_s porosity [-]

Hydrodynamic Dispersion - J_{lh}

Fluxes inside a single pore:

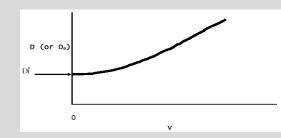
Fluxes inside a system of pores:





Total Effective Dispersion Coefficient

Many experiments have shown that D (or D_e) increases with the pore-water velocity, v:



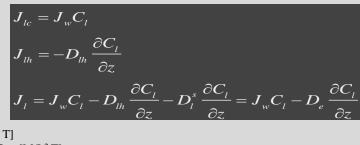
Spreading due to hydrodynamic dispersion is due to complicated flow paths around soil particles, to differences in water velocity within single pores, and to differences in flow velocity between adjacent pores.

Total Solute Liquid Flux

Advective Flux:

Hydrodynamic Flux:

Solute Liquid Flux:

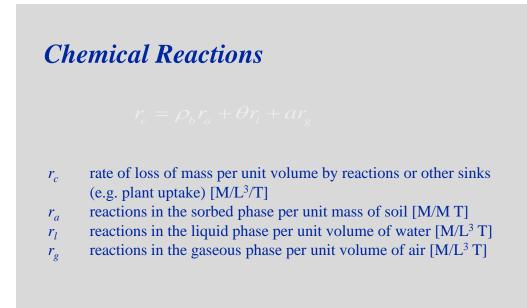


- J_l solute flux [M/L² T]
- J_{lc} liquid advective flux [M/L² T]
- hydrodynamic dispersion flux [M/L² T] J_{lh}
- J_{ld} liquid diffusion flux [M/L² T]
- water flux [L/T]
- $J_w \\ D_{lh}$ hydrodynamic dispersion coefficient [L²/T]: $D_{lh} = \lambda v$
- λ dispersivity [L]
- D_l^{s} soil liquid diffusion coefficient [L2/T]
- effective diffusion-dispersion coefficient [L2/T] D_e

General Solute Transport Equation

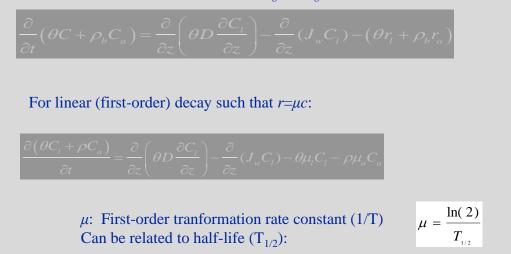
For the most general case where chemicals are present in the dissolved, sorbed and vapor phases, the chemical transport equation is obtained by combining the continuity equation for the total solute with the vapor and liquid flux densities and the reaction term to produce:

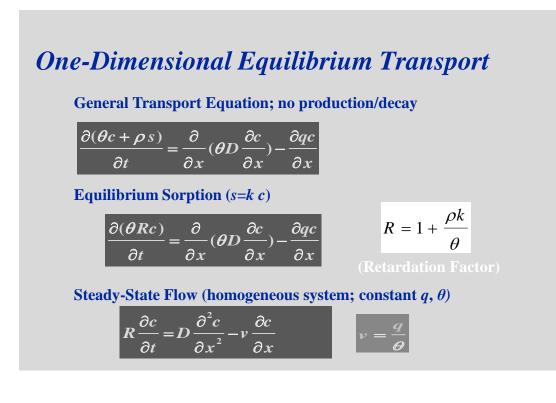
$$\begin{split} \frac{\partial C_{T}}{\partial t} &= -\frac{\partial J_{c}}{\partial z} - r_{c} \\ \frac{\partial}{\partial t} \Big(\rho_{b} C_{a} + \theta C_{l} + a C_{g} \Big) = \\ &= \frac{\partial}{\partial z} \Bigg(\theta D \frac{\partial C_{l}}{\partial z} \Bigg) + \frac{\partial}{\partial z} \Bigg(D_{g}^{s} \frac{\partial C_{g}}{\partial z} \Bigg) - \frac{\partial}{\partial z} (J_{w} C_{l}) - \Big(\rho_{b} r_{a} + \theta r_{l} + a r_{g} \Big) \end{split}$$



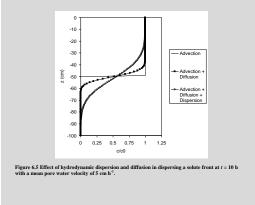
Advection-Dispersion Equation (ADE)

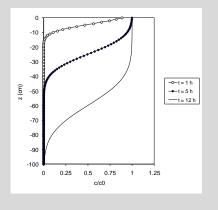
When the vapor phase is negligible, C_g and r_g are zero, and the ADE becomes:

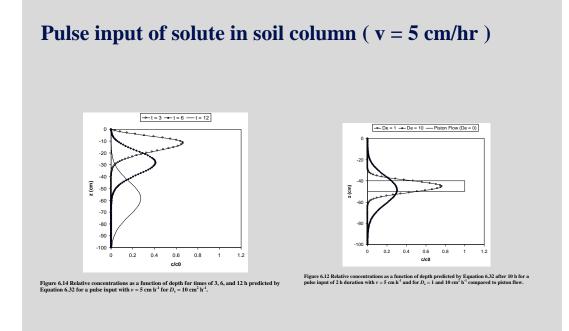




Effects of diffusion and advection on transport of solute







Effects of solute retardation on transport of solute

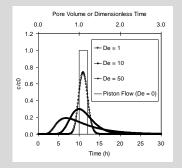


Figure 6.15 BTCs at a depth of 50 cm predicted by Equation 6.32 for a pulse input with $\nu = 5$ cm h⁴ for $D_c = 1$, 10, and 50 cm² h⁴ compared to piston flow plotted as a function of time (bottom axis) and as a function of pore volume or dimensionless time (top axis).

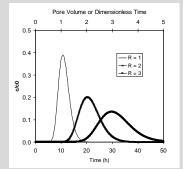


Figure 6.19 BTCs for a depth of 50 cm for a pulse input of 2 h duration with $\nu = 5$ cm h⁻¹, $D_e = 5$ cm² h⁻¹, and R = 1, 2, and 3 using Equation 6.42 and Equation 6.32 as a function of time (bottom axis) and pore volume or dimensionless time (top axis).

Effects of solute decay on transport

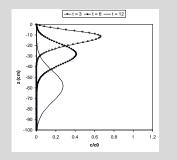


Figure 6.14 Relative concentrations as a function of depth for times of 3, 6, and 12 h predicted by Equation 6.32 for a pulse input with $\nu = 5 \text{ cm h}^{-1}$ for $D_e = 10 \text{ cm}^2 \text{ h}^{-1}$.

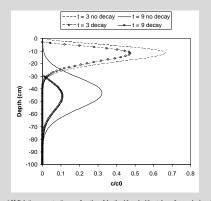
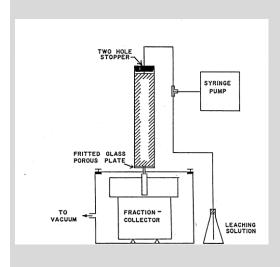


Figure 6.22 Relative concentration as a function of depth with and without decay for a pulse input after 3 and 9 h ($\mu = 0.1$ h⁻¹, $t_0 = 2$ h, $\nu = 5$ cm h⁻¹, $D_e = 10$ cm² h⁻¹, R = 1).

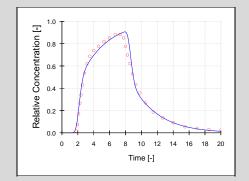
Outline

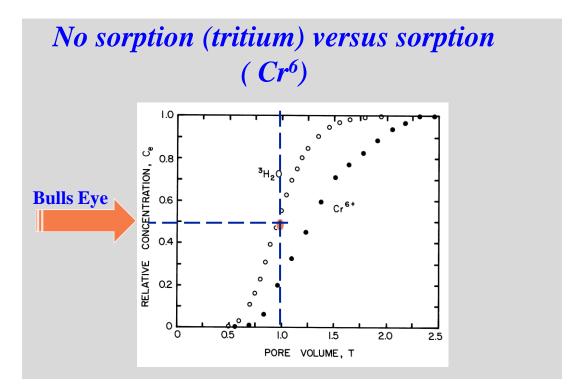
- ♦ Introduction: Water Flow and Solute Transport
- ♦ Solute Transport
 - Governing transport equations
 - Advection, diffusion, dispersion, reactions (ADE)
 - Solute Break-Through Curves, Boundary conditions
 - Nonequilibrium transport (chemical, physical)
 - Decay chains

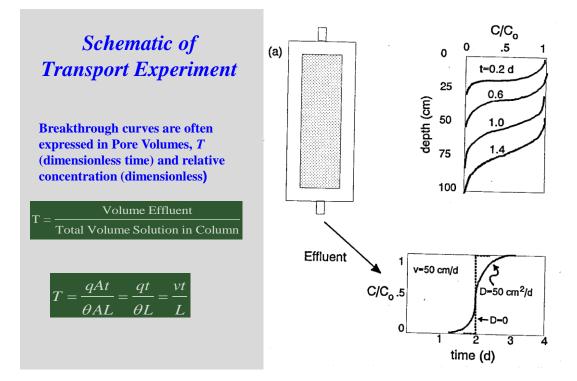
Soil Column Breakthrough Experiment



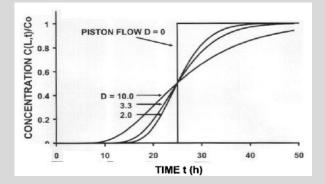
A plot of outflow concentration versus time is called an effluent curve, an outflow curve, or a **"breakthrough" curve** (representing the solute breaking through at the outflow end).







Effect of Dispersion

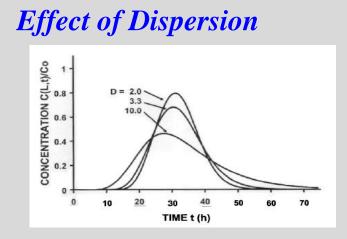


The effect of dispersion on the breakthrough curve is to cause some early and late arrival of solute with respect to the breakthrough time. This deviation is due to diffusion and small-scale convection ahead of and behind the front moving at velocity *V* and becomes more pronounced as *D* becomes larger.

Outflow concentration versus time for a step change in solute input at t = 0. Column length is 50 cm and water velocity V = 2 cm h⁻¹. Curves are for different values of *D* in cm²h⁻¹.

 $D = 0 \Rightarrow$ **Piston Flow**

$$C(L,t) = \frac{C_0}{2} \left[erfc\left(\frac{L - Vt}{\sqrt{4Dt}}\right) + \exp\left(\frac{VL}{D}\right) erfc\left(\frac{L + Vt}{\sqrt{4Dt}}\right) \right]$$
$$erfc(x) = \frac{2}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(-\xi^2) d\xi$$

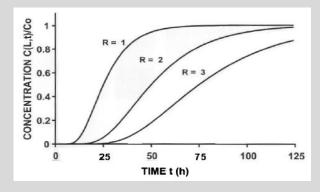


Note that as *D* becomes larger, the pulse spreads out more and the pulse height decreases.

Outflow concentration versus time for a narrow pulse of solute input at t = 0. Column length is 50 cm and water velocity V = 2 cm h⁻¹. Curves are for different values of *D* in cm²h⁻¹. (M_0 – solute mass)

$$C(L,t) = \frac{M_0 L}{2J_w \sqrt{2Dt^3}} \operatorname{erfc} \left[-\frac{\left(L - Vt\right)^2}{2Dt} \right]$$

Effect of Sorption



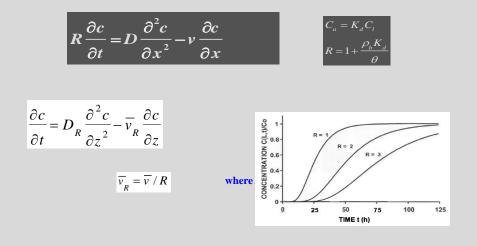
The breakthrough times increase as R increases, and the apparent amount of solute spreading of the outflow curves increases with R as well.

K_d is the distribution or partition coefficient. For linear isotherm:

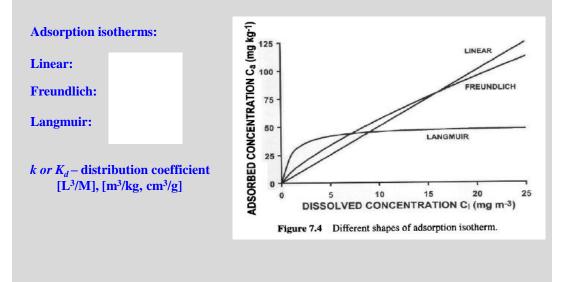
 $C_{a} = K_{d}C_{l}$ $R = 1 + \frac{\rho_{b}K_{d}}{\theta}$

Outflow concentration versus time of chemicals with different retardation factors for a step change of solute input at t = 0. Column length is 50 cm and water velocity V = 2 cm h⁻¹. Curves are for different values of $R(K_q)$.

Effect of Sorption of solute to soil



Sorption



One-Dimensional Equilibrium Transport General Transport Equation; no production/decay $\partial(\overline{\theta c + \rho s})$ $(\theta D \frac{\partial c}{\partial x}) \partial qc$ ∂ дх ∂x ∂t **Equilibrium Sorption** (*s*=*k c*) ∂qc $\partial(\theta Rc)$ ∂ ∂с $R = 1 + \frac{1}{2}$ (θD) ∂t ∂x ∂x ∂x (Retardation Factor) Steady-State Flow (homogeneous system; constant q, θ) $R^{\partial c}$ $=D\frac{\partial^2}{\partial^2}$ ∂c ∂x ∂t

Initial and Boundary Conditions

Initial Condition: $c(x,0)=C_i$

Inlet Boundary Conditions, at *x***=0:**

$$c(0,t) = C_0 \qquad (-D\frac{\partial c}{\partial x} + v c)|_{x=0+} = v C_0$$

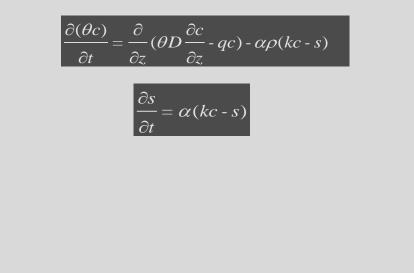
Outlet Boundary Condition: Finite (x=L) or semi-infinite $(x \rightarrow \infty)$ system

$$\frac{\partial c}{\partial x}(L,t) = 0 \qquad \qquad \frac{\partial c}{\partial x}(\infty,t) = 0$$

Outline

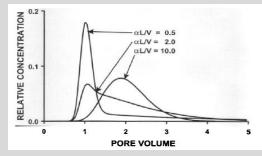
- Introduction: Water Flow and Solute Transport
- Solute Transport
 - Governing transport equations
 - Advection, diffusion, dispersion, reactions (ADE)
 - Solute Break-Through Curves, Boundary conditions
 - Nonequilibrium transport (chemical, physical)
 - Decay chains

One-Site Chemical Nonequilibrium

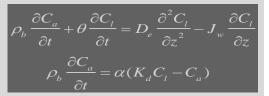


Effect of Nonequilibrium Sorption

When the time of contact is short compared to the time required for sorption, the assumption of instantaneous equilibrium between the adsorbed and dissolved chemical concentrations is not valid.



Outflow concentration versus pore volume for a chemical with a retardation factor R = 2 as a function of the rate parameter α .

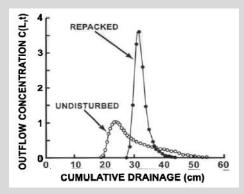


 α - a rate parameter that expresses the rate of mass transfer of chemical between the phases. Note that the rate of change of mass in the sorbed phase is assumed to be proportional to the deviation from equilibrium.

For large values of α , the sorption process reaches equilibrium during the time of contact, and the equilibrium sorption model may be used. When the rate parameter approaches zero, sorption is largely blocked, and the chemical moves like a mobile tracer. For intermediate values of α , breakthrough begins earlier than with equilibrium sorption, and the outflow curve has a long tail.

Effect of Soil Structure

Aggregated soils have a continuous network of large pores through which water can flow rapidly, and a set of finer pores within the aggregates where water is present but largely stagnant. Soils with a massive structure may have fracture planes that channel virtually all of the water in the medium. In contrast, soils that have been packed uniformly have a distribution of pore sizes, and most of the water is either moving or in close contact with moving water. For such media, the uniform CDE generally provides a good description of the transport process.



Chloride arrives after less drainage in the undisturbed soil column than in the repacked one and has substantial delay in the arrival of the final portion of the applied pulse at the outflow end. For soils of this type, some of the solute can be transported much more rapidly than one would expect based on the total volumetric water content and the piston flow model.

Mobile-Immobile Water Model

The mobile-immobile water model (MIM) divides the wetted pore space into two regions: a mobile water content (θ_m through which water is flowing and an immobile water content ($\theta_{im} = \theta - \theta_m$) which contains stagnant water. For this system, the solute concentration is divided into an average concentration C_m in the mobile region and a second concentration C_{im} in the immobile region. The solute is transported by a convection-dispersion process in the mobile region while mass is exchanged with the immobile region by a rate-limited diffusion process. For an inert, nonreactive solute:

$$\theta_{m} \frac{\partial C_{m}}{\partial t} + \theta_{im} \frac{\partial C_{im}}{\partial t} = D_{e} \frac{\partial^{2} C_{m}}{\partial z^{2}} - J_{w} \frac{\partial C_{m}}{\partial z}$$
$$\theta_{im} \frac{\partial C_{im}}{\partial t} = \alpha (C_{m} - C_{im})$$

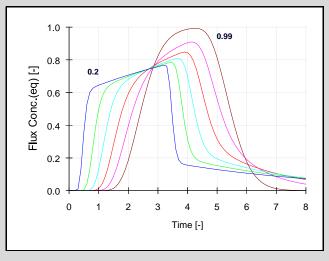
 α - rate coefficient.

The rate of change of solute stored in the immobile region is proportional to the difference in concentration between the two regions. Thus, when solute is added to the soil as a pulse, it will first diffuse from the mobile to the stagnant region and then return to the mobile region after the pulse has passed through the system.

Mobile-Immobile Water Model

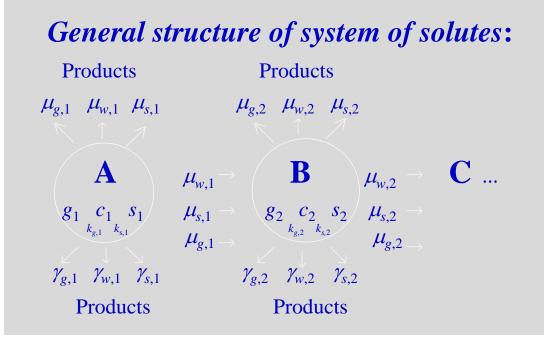
Effect of mobile/immobile water ratio

Effect of mobile/immobile water ratio



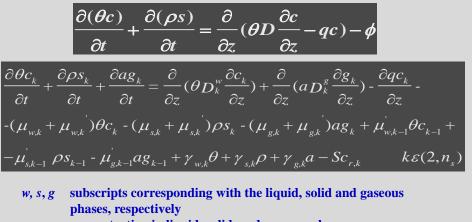
Outline

- Introduction: Water Flow and Solute Transport
- ♦ Solute Transport
 - Governing transport equations
 - Advection, diffusion, dispersion, reactions (ADE)
 - Solute Break-Through Curves, Boundary conditions
 - Nonequilibrium transport (chemical, physical)
 - Decay chains
 - Parameter estimation



Example sequential first-order chains: • Radionuclides [van Genuchten, 1985] $\begin{array}{c}238\text{Pu}\\c_1 s_1\end{array} \xrightarrow{234\text{U}}\\c_2 s_2\end{array} \xrightarrow{230\text{Th}}\\c_3 s_3\end{array} \xrightarrow{226\text{Ra}}\\c_4 s_4\end{array}$ • Nitrogen [Tillotson et al., 1980] $\begin{array}{c}g2\\M_2\\M_2\\M_2\\c_1 s_1\end{array} \xrightarrow{226\text{Ra}}\\c_4 s_4\end{array}$

Governing Solute Transport Equations



c, s, g	concentration in liquid, solid, and gaseous phase
	respectively

Governing Solute Transport Equations

q_i	volumetric flux [LT ⁻¹]
ρ	soil bulk density [ML-3]
a	air content [L ³ L ⁻³]
S	sink term in the water flow equation [T ¹]
C _r	concentration of the sink term [ML-3]
D^w , D^g	dispersion coefficients for the liquid and gaseous phase [L ² T ¹], respectively
k	subscript representing the kth chain number
μ_w, μ_s, μ_g	first-order rate constants for solutes in the liquid, solid, and gaseous phases [T ¹], respectively
γ_w γ_s , γ_g	zero-order rate constants for the liquid [ML ⁻³ T ⁻¹], solid [T ⁻¹], and gaseous phases [ML ⁻³ T ⁻¹], respectively
μ_w', μ_s', μ_g	' first-order rate constants for solutes in the liquid, solid and gaseous phases [T ¹], respectively; these rate constants provide connections between the individual chain species.
n _s	number of solutes involved in the chain reaction

Outline

- Introduction: Water Flow and Solute Transport
- ♦ Solute Transport
 - Governing transport equations
 - Advection, diffusion, dispersion, reactions (ADE)
 - Solute Break-Through Curves, Boundary conditions
 - Nonequilibrium transport (chemical, physical)
 - Decay chains
 - Parameter estimation

Parameter Estimation with HYDRUS

Parameter Estimation:

- Soil hydraulic parameters
- Solute transport and reaction parameters
- Heat transport parameters

Sequence:

- Independently
- Simultaneously
- Sequentially

Method:

- Marquardt-Levenberg optimization

Objective Function for Inverse Problems

$$\Phi(\mathbf{b}, \mathbf{q}, \mathbf{p}) = \sum_{j=1}^{m_q} v_j \sum_{i=1}^{n_{qj}} w_{i,j} [q_j^*(x, t_i) - q_j(x, t_i, \mathbf{b})]^2 + \sum_{j=1}^{m_p} v_j \sum_{i=1}^{n_{pj}} \overline{w}_{i,j} [p_j^*(\theta_i) - p_j(\theta_i, \mathbf{b})]^2 + \sum_{j=1}^{n_b} \hat{v}_j [b_j^* - b_j]^2$$

1st term:	deviations between measured and calculated space-time variables
2nd term:	differences between independently measured, p_i^* , and predicted,
	p_i , soil hydraulic properties
3rd term:	penalty function for deviations between prior knowledge of the
	soil hydraulic parameters, b_i^* , and their final estimates, b_i .

Formulation of the Inverse Problem

When the covariance matrix V is diagonal and all elements of matrix V_{β} are equal to zero , i.e., the measurement errors are noncorrelated and no prior information about the optimized parameters exists, the problem simplifies into the weighted

least-squares problem

$$\Phi(\beta) = \sum_{i=1}^{n} w_i \left[C_i^* - C_i(\beta) \right]^2$$

 w_i - weight of a particular measured point

Parameter Estimation

