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Modeling Introduction 

• Type of models; 

• Classification of  mathematical models; 

• Model calibration, verification and 

sensitivity analysis; 

• Model complexity and uncertainty 

What is a model 
• Methodology to organize what we know of a 

system; 

• Use it to show/study interrelationships of factors 
that influence system, and positive/negative 
feedbacks; 

• Collection of information that is known, arranged 
in a systematic manner; 

• Where knowledge is lacking, empirical 
information is used; 

• Model is an excellent educational tool 

• It provides framework to better understand 
systems. 
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Why are models used? 

• Sensitivity analysis; 

• Collection of information of what we know; 

• To document what experimental information is 
needed; 

• Scenario evaluation  - global climate modeling 
IPCC (International Panel on Climate Change) 

• Integration of elementary processes; 

• In place of experiments; 

• To understand how system works; 

• Forecasting/prediction 

• Parameter estimation 
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IPCC (2001) Scenarios  

(No explicit GHG Policy) 

Simulated 20th 

Century 

Scenario modeling of Global Climate Change  

IPCC Fourth Assessment Report 

Range of climate sensitivity... 

Emissions scenario 

Projected Temperature Change 

IPCC Fourth Assessment Report 2007) 
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MODEL 
 

 Mostly, a simplification of the real world. 

References: J.R. Philip. 1991. Soils, Natural Science, and Models. 

Soil Science 151(1):91-98; 

D.L. Corwin, J.Letey, and M.K. Carrillo. 1999. Modeling non-point 

pollutants in the vadose zone: Back to basics. IN: Assessment of non-

point source pollution in the vadose zone. Geophysical Monograph 

108. AGU; 

N. Oreskes, K. Schrader-Frechette, and K. Belitz. 1994. Verification, 

validation, and confirmation of numerical models in the earth sciences. 

Science 263:641-646. 

I. Scale models 

(when geometry is relevant) 

• Fluid mechanics; 

• Mostly empirical 

• Used for dimensional analysis and similitude; 

 

Used for: 

1. Hydrologic control structures: dams, weirs 

2. Ship models; 

3. Groundwater flow (Hele-Shaw model). 
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Some Examples 

Bay Delta Model San Sausalito 
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Hele Shaw Model for Seepage across 

earthen dam and to demonstrate  

finger flow 

II. Physical Analog Model 

• E.g. Electrical analog (Ohm’s law) 

• For experimental investigations 

• That are basically described by a potential 

gradient-dependent flux, e.g. 

 

     Darcy’s Law 
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Current versus Water flow 

dx

dH
Kq

water
 RVi /

Resistance, R, is equivalent to Δx/K 

Current, I, is analogous to water flux 

Voltage, V, is analogous to head. 

Analog models of aquifer 

hydraulics 

 

 
An analog model used grids of 

capacitors and resistors to 

simulate aquifer hydraulics.  
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Teledeltos paper/ resistors 

networks 

• Use resistors to model permeability 

• Use capacitors to emulate storage change 

Constant head bc 

Tracing equal 

potential lines 

III. Fitting Models to Parametric Functions 
(RETC - HYDRUS) 

• E.g regression; 

• Goal is to fit model parameters, eg. soil 

hydraulic functions: 

Soil water retention model (van Genuchten): 
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Soil Water Retention: Van Genuchten Model Fitting 
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IV. Mathematical Models 

• To describe the state of the system 

(physical, chemical & biological) 

• Simplified version of the behavior of a 

system by a set of (nonlinear) equations; 

• Analytical models: 
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An analytic solution can be obtained 

using LaPlace transformations with the following 

boundary conditions: 
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Parameter Estimation 

Steady-State (linear) Problems 

STANMOD  

Computer Software for 
Evaluating Solute Transport in 
Porous Media Using Analytical 
Solutions of the Convection-

Dispersion Equation  

J. Šimůnek, M. Th. van Genuchten, M. Šejna, 

N. Toride, and F. J. Leij 
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V. Numerical models 

• Assumptions for analytical solutions are 

not met, e.g. boundary conditions, 

heterogeneity, nonlinearity; 

• Modeling domain is large and complex; 

 

Hydrology of 1,400 km2 area 

in San Joaquin Valley 

MOD-HMS: Variably-saturated 

flow equation 
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Regional-scale Hydrologic Modeling 
Schoups, G.H.  J.W. Hopmans, C.A. Young, J. A. Vrugt, W.W. Wallender, K.T. Tanji, and 

S.   Pandy. 2005. Sustainability of irrigated agriculture in the San Joaquin Valley, 

California. PNAS 102:15352-15356. 

Soil-Plant-Atmospheric Continuum (SPAC) 
Somma, F., V. Clausnitzer, and J.W. Hopmans. 1998. Modeling of transient three- 

      dimensional soil water and solute transport with root growth and water and nutrient 

uptake.  Plant and Soil. 202:281-293. 
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Numerical Modeling 

• Use computer to analyze mathematical models: 

   1. Advances in system understanding  increase 
system complexity; 

   2. Increase in power and availability of computer 
power; 

 

• By itself computer modeling is not the ‘holy grail’. 

Nr of transistors that fit on a IC 

Doubles every 2 years !!!!! 

Misconceptions 

• Model is truth; 

         NO, Model is only as good as quality           

  of the input; 

 

Philip(1991): ‘from the point of view of natural 

science, and indeed from any viewpoint 

concerned with truth, a disquieting aspect of 

computer-based modeling is the gap between 

the model and the real-world events.’ 
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Misinterpretation of models: 

• Very likely, model is tested for limited 

range of experimental conditions; 

• Misunderstanding of differences between 

reality and system model with its 

assumptions and limitations; 

• Solution algorithm’s are considered black 

box for user. 

Another quote from Philip (1991): 

 ‘  A disturbing aspect is that computer modeling 

has largely supplanted laboratory 

experimentation and field observation as the 

research activity of both undergraduate and 

graduate students.’ 

 

    In times of limited funding for experimental work, 

computer-based research is economical  !!! 
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Main Limitations of Numerical 

Vadose Zone Models 

 

1. The governing equations are not always realistic 
(usually a minor problem for flow models). 

2. Discretization (subdivision) of the modeled region 
requires averaging of vadose zone properties in space 
and averaging system changes w.r.t. time.  Model 
details limited by availability of data, computer 
capability and $. 

3. Data for vadose zone properties and boundary 
conditions usually lacking. 

4. Too complex, and relatively too many unknown 
parameters: 

Relationship between data availability  
                                          and model complexity 

     The Figure above suggests that changes in optimum model complexity as a 
function of data availability are related to the scale of the application. When 
simulating small-scale systems, such as in laboratory soil column, data 
availability is usually large and parameter uncertainty is small, thereby 
justifying the use of a complex model..  

 

    When moving to larger scales, data availability decreases and parameter 
uncertainty increases with  input uncertainty  dominating the total model 
error. In that case, a less complex model with  larger structural uncertainty 
may be appropriate, as long as model structural error remains small 
compared to  input uncertainty and observation errors .  

 

i


Schoups, G. and J.W. Hopmans. 2006. 

  

Vadose Zone Journal Special Issue. Evaluation of model 

complexity and input uncertainty of field-scale water flow 

and salt transport.  

 

Vadose Zone Journal 5:951-962  
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Complex models 

Evaluate similarities between different 

models: e.g. global climate  change 

Global mean air 

temperature by 

10 GCMs 

identically 

forced with CO2 

increasing at 

1%/year for 80 

years 

Paradigm Shift  

(Post and Votta, Physics Today, January 2005) 

 

‘New methods of validating complex 

numerical codes are mandatory if 

computational science is to fulfill its 

promise for science and society.’ 

The bigger and more complex the code, the 

more difficult to verify and validate. 

E.g. large spatial and temporal scales- climate 

modeling, rocket science, fusion research, star 

birth simulations. 
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Experimental Needs 

• Experiments are typically designed to 

explore scientific phenomena, test 

theories, or for performance analysis; 

 

• However, new experiments must be 

developed to validate complex models 

Classification of Mathematical 

Models 
A. Functional and Mechanistic models 

 

Functional: Empirical or black box 

   Provide general description of system 

   Input-output relationship only 

                  No internal relations needed 

   Simple models with few constraints 

Mechanistic: Attempt to describe system mechanisms  
   in  most fundamental way. That is, how     
does the response come about? 
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Black box modeling or input-output 

only 

Mechanistic white-box model 

Based on First Principles 

The next step is to model 

relationships of the previously 

identified factors and responses. 

In this step we choose a 

parameter and identify all of the 

other parameters that may have 

an influence on it.  
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Functional and Mechanistic 

models 

• Mostly, the change from a functional to a 

mechanistic model is governed by the 

understanding of the underlying processes; 

• Though, all models are a mixture of 

empiricism and mechanism; 

• A model simplifies reality, and at some 

level our understanding is lacking and we 

must resort to empirical relationships. 

Darcy’s Law (1856) is an empirical 

model 
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B. Static and Dynamic models 

• Difference is whether a time variable is included in the model 
(other than boundary condition). This is an approximation, 
since all natural systems do change at some rate and are 
never at a true equilibrium; 

 

• Static modeling is justified, if 

   a. Rate of change is small or not important within the time 
period over which process is considered (pseudo steady-state 
system), e.g. Daily Evapotranspiration Model input, ET. 

 

    b. When a capacity, rather than a rate model is selected. A 
capacity model computes changes without computing time 
rate of change achieved. 

BUCKET Model: Capacity Model used for 
Field Irrigation Scheduling 

 ETEEE 

Rainfall+Irrigation 

      + ET 

Drainage 

Bucket Full: Soil’s Field Capacity 

Bucket Empty: Crop Wilting Point 

Daily ET = related to open pan 
evaporation, ETo 
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C. Deterministic and Stochastic 

Models 

• Deterministic: Unique definable outcome 

      Ignores natural variability 

• Stochastic: Contains random elements in 

          bc or model parameters; 

                      Computes variance as well as 

   expected values; 

         Model computes uncertainty 

   of model results. 

Monte-Carlo Analysis 
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Deterministic Model 

Do many iterations, so that 

statistical moments (mean 

and variance of relevant 

output variables are obtained 
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D. Lumped versus Distributed 

• Distributed Model: Partition model domain 

(plot, field, watershed) into sub-domains, 

each characterized by boundary 

conditions, soil type, landuse, etc 

(patches) 

• Lumped Model: Single aggregated domain 

with properties and boundary conditions 

applied  across the whole domain. 

Regional-scale hydrologic modeling of 
flow and reactive salt transport: 

60-year Reconstruction of Salinity History in the SJV 

Distributed Model 
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Model calibration 
Calibration: Modification of model parameters and 

boundary conditions so that model results match 

field measurements more closely.  

Model Verification . . . . 
• Verification: Verification of model accuracy by 

comparing simulated results with measurements that are 
independent of the data used for calibration; often 
accomplished by simulating changes during a time 
period that was not included in the calibration procedure. 

 

• Better: Compare numerical with analytical model results; 

 

 

• Sensitivity Analysis: Testing effects of uncertainty 
(errors) in model input data on model results. Can be 
used to assign “error bars” to model results. 
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Model Validation . . . 

• To determine whether the model captures 

the essential physical phenomena with 

adequate confidence. Is the model 

consistent? 

 

• Oreskes paper: Model Confirmation . . . . 

 

Sensitivity Analysis: Testing effects of uncertainty (errors) in 

model input data on model results. Can be used to assign 

“error bars” to model results. 

 

For example: Sensitivity of 

soil water retention function 

parameters on simulated soil 

extracted water volume, after 

applying constant suction to 

the soil 
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Sensitivity Analysis: Multistep 

Extraction 
(A) Sensitivity of soil hydraulic parameters,  

Take-home Messages 

• Model is simplified version of reality; 

• Model is only as good as its input; 

• All models are empirical at some level; 

• Models do not substitute for experimentation; 

• Extensive model documentation is required; 

• Take time to understand model –assumptions and 
limitations 

• Have understanding of model uncertainty; 

• Consider level of detail required for model selection; 

• Model simulation is different than model prediction; 

• Good modeling is an ‘art form’. 

 


