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PARAMETER OPTIMIZATION USING 
INVERSE MODELING 

Contact: vcouvreur@ucdavis.edu 
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OUTLINE 

• Direct vs inverse problems 

 Ex.1: Darcy’s experiment 

 Analytical solutions 

 Ex.2: Multi-step outflow experiment 

• Inverse modeling scheme for parameter optimization 

 Objective function 

 Optimization algorithms 

 Ex.3: Orchard soil water status monitoring 

• Uncertainty Analysis 

• Overview 
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EXAMPLE OF DIRECT PROBLEM 

Model: Q = 

System properties: Ks, A and L are known 

Response: Q(t) is unknown 

L 

Ks A ΔP 

Initial cond.: θ(t=0,x) = θs 

Boundary cond.: ΔP(t>0) = ΔPobs(t) 

Image: www.groundwateruk.org 

Typical application: 

Direction and speed of 
pollutant plume propagation  

? 

INVERSE PROBLEM ANALOGY 

Response is known BUT system properties are unknown 
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INVERSE PROBLEM DEFINITION 

Solving an inverse problem is the process of calculating 
from a set of observations the causal factors that 
produced them. It is called an inverse problem because 
it starts with the results and then calculates the 
causes. This is in contrast to the corresponding direct 
problem, whose solution involves finding effects based 
on the complete description of their causes. 
 

“Inverse modeling is a formal approach for estimating 
the variables driving the evolution of a system by taking 
measurements of the observable manifestations of that 
system, and using our physical understanding to relate 
these observations to the driving variables.” (Lectures 
on inverse modeling, D. J. Jacob, 2007). 

INVERSE PROBLEM EXAMPLE 1 

Forward model: Q = 

System property: Ks is unknown 

System response: Q(t) is known 

L 

Ks A ΔP 

Initial cond.: θ(t=0,x) = θs 

Boundary cond.: ΔP(t>0) = ΔPobs(t) 

Typical application: 

Characterization of system 
properties and/or system state 

    ? 

System properties: A, L are known 

But straightforward Ks 
calculation thanks to 
the available analytical 
relation “Q(Ks)” in 
saturated conditions  
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ANALYTICAL SOLUTIONS 

Darcy model assumes that ŷ = Ks  (i.e. a constant) is the 
estimator of y = QL/AΔP 

Let’s minimize the sum of squared errors between the 
model ŷ and observations y:  
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For that we need to nullify dSSE/dKs : 

Which yields : ys K

Single parameter solution: 

x 

y 

The linear model assumes that ŷ = a x + b  
is the estimator of y 

Sum of squared errors: 

ANALYTICAL SOLUTIONS 
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Generalization for 2 parameters: 
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Se (h)= (        )
m 

Unsaturated soil hydraulic properties estimation  

1+(αh)
n 

1 

θ(Se) = θr + Se (θs – θr) 
 

K(Se) = Ks Se
λ (1-(1- Se

1/m )
m)

2 

Soil relative saturation index Se: 

Soil water retention curve (WRC): 

Soil hydraulic conductivity curve (HCC): 

INVERSE PROBLEM EXAMPLE 2 

3
 . 5

   c
 m

 

air 
inlet 

quick  
disconnect 
fitting 

porous 
ceramic 
cups 

water  
outlet 

port for 
flushing 
bubbles 

quick  
disconnect 
fittings 

1-psi differential 
pressure 
transducer 

15-psi gauge 
pressure 
transducers 

porous  
nylon  
membrane 

1-psi gauge 
pressure 
transducer 

MULTI-STEP OUTFLOW SETUP 

Real-time 
outflow 
measurement 

Connection 
to free air 

Multi-step 
air injection  

∇ 

Water 
table 

Water can flow out 
BUT air stays in 

Pressure builds up 
inside the cell when 
injecting air 
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SYSTEM RESPONSE TO AIR PRESSURE 

The plateaus 
“equilibrium positions” 

tell us about the soil 
water retention curve 

The concavity tells us 
about the soil hydraulic 
conductivity curve 

Point 
measurement 

Integrative 
measurement 

INVERSE PROBLEM EXAMPLE 2 

Model: Jw(t,z) = K(h(t,z)) 

System properties: WRCparms & HCCparms are unknown 

System response: Jw(t,z=0) is known 

Δz 

Δ(h(t,z)+z) 

Initial cond.: h(t=0,z) = z 

Boundary cond.: h(t>0,z=0) & h(t>0, z=L) 

h(t,z=L) 

h(z=0)=0 

 Jw(t,z=0) 

Δθ(t,z) =  
 Δz 

ΔJw(t,z) Δt 

The multi-step outflow experiment 

θ = f1(h,WRCparms) 

K = f2(h,HCCparms) 

??? 

No analytical relation available 
for “Jw(t,z=0,WRCparms,HCCparms)” 

Need a full inverse 
modeling scheme to 
find WRCparms & HCCparms  

??? 
h(t,z=L/2) 
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INVERSE MODELING SCHEME 
FOR PARAMETER OPTIMIZATION 

(MSO) 

(Outflow & 
matric potential) 

OBJECTIVE FUNCTION 

Definition: the objective function (OF) quantifies the 
quality of the fitness between measured and simulated 
observed system responses for any set of parameters. 

- Example 1, weighted-average difference: 

OF(parms) = Σobs (Simobs(parms) - Measobs) wobs 
 

- Example 2, root weighted-average square difference: 

OF(parms) = sqrt(Σobs (Simobs (parms) - Measobs)
2 wobs ) 

 

Individual weights « wobs » can be attributed to each 
observation in space and time. 
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OBJECTIVE FUNCTION 

Definition: the objective function (OF) quantifies the 
quality of the fitness between measured and simulated 
observed system responses for any set of parameters. 

OF(parms) = Σobs (Simobs(parms) - Measobs) wobs 

 

 

 

 

 
Errors for outflow & matric head ≈ 0.01 cm & 10 cm resp. 
  Adjust wobs to the type of observation ! 
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The ensemble of all possible combinations of values for all 
the model parameters constitutes the “parametric space”.  

OBJECTIVE FUNCTION 

If the model has 2 parameters, 
the parametric space is a plan. 
Each point in this plan is a 
“parameter set” X. 

Displaying the objective function 
value for all parameter sets in 
the parametric space is a way to 
visualize the OF “topography” 
(only possible for 2 parameters 
at a time). 

Ks (cm/h) 
θr (%) 

O
F

 (
%

)  

The type of topography determines what type of optimization 
algorithm is more likely to find the optimal parameter set. 
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OBJECTIVE FUNCTION 

In a 3-dimensional parametric space, the third dimension 
cannot be used to display the OF topography. 

θs (-) 

K
s 

(c
m

/h
)  

n (-) 

OF (%) 
Color-code needed to display 
OF values on 2-D slices of the 
parametric space. 
 

Discretization of each slice is 
50 x 50 => 7500 Hydrus runs 
necessary to evaluate the OF 
at each point and get this 
image (not quite efficient to 
search for the minimum). 
 

Warning: Incomplete view of 
the OF topography. 
 

If more parameters need to be optimized, this process becomes 
less and less efficient. 

INVERSE MODELING SCHEME 
FOR PARAMETER OPTIMIZATION 

(MSO) 

(Outflow & 
matric potential) 
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OPTIMIZATION ALGORITHMS 

Definition: the optimization algorithm selects parameter 
values Xi+1 based on prior information on the objective 
function score (…,OF(Xi-1),OF(Xi)) of previous simulations. 
The way this information is used differs among optimizers: 

- Gradient descent method: 

  Xi+1 = Xi – p ∇OF(Xi) 

Ks 

O
F

 

OF(Xi) 

Xi 

∇OF(Xi) 

Xi+1 

where Xi is a vector containing 
the parameter set of the ith 
iteration and p is a property  of 
the optimizer. 

Type: “Sliding search algorithm” 
(see also Levenberg-Marquadt) 

Single-parametric space 

OPTIMIZATION ALGORITHMS 

Ks 

O
F

 

Xi 

where Xi is a vector containing 
the parameter set of the ith 
iteration and p is a property     
of the optimizer. 

Type: “Sliding search algorithm” 
(see also Levenberg-Marquadt) 

Single-parametric space 

∇OF(Xi) OF(Xi) 

Definition: the optimization algorithm selects parameter 
values Xi+1 based on prior information on the objective 
function score (…,OF(Xi-1),OF(Xi)) of previous simulations. 
The way this information is used differs among optimizers: 

- Gradient descent method: 

  Xi+1 = Xi – p ∇OF(Xi) 
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OPTIMIZATION ALGORITHMS 

- Simplex Search Method (local): 

Construct simplex using best N + 1 points (N = number of parameters) 

Xtest = Xm + p (Xm - Xw) 

where Xw is the worst parameter set in the simplex and Xm is the 
mean of the best N parameter sets 

Ks 

n 

Tested p values in an iteration: 

pr  = reflection 

pe  = expansion 

pc+= positive contraction 

pc- = negative contraction 
 

Xw is replaced by the best Xtest 
and a new simplex is formed. 
 

Type:  ”Jumping search algorithm” 

Xm 

Xw 

Bi-parametric space 
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OPTIMIZATION ALGORITHMS 
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PROBLEMS WITH LOCAL SEARCH METHODS … 
O

F
 

OPTIMIZATION ALGORITHMS 

(1) Generate sample: Sample M parameter sets {X1, …, XM} and 
compute the OF of each of these points; 
 

(2) Rank points: Sort the M points in order of decreasing fitness; 
 

(3) Partition into complexes: Partition the M points into 
complexes, each containing one of the best ranked points and 
at least N+1 points on total (N = number of parameters); 
 

(4) Evolve each complex: Evolve each complex using the Simplex 
Search Method; 
 

(5) Shuffle complexes: Sort the points in order of decreasing 
fitness (i.e. increasing OF value);  
 

(6) Check convergence: If convergence criteria are satisfied, 
stop; otherwise return to step 3; 

Uses multiple simplex searches & complex shuffling 

OPTIMIZATION ALGORITHMS 

- The Shuffled Complex Evolution Method (global): 
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Initial population (1->3) Complex evolution (4) 

Complex Shuffling (5->3) Complex Evolution (4) 

Ks 

n 

Ks 

n 

Ks 

n 

Ks 

n 

OPTIMIZATION ALGORITHMS 

- The Shuffled Complex Evolution Method (global): 

Evaluate OF 

Sort points based 
on OF 

Partition them   
into red and blue 
complexes 

Iteration 1 

Iteration 2 

Convergence? 

No: go to 
next iteration 

Yes: end 
optimization 

See also “Genetic Algorithm”, “DREAM”, … 

INVERSE MODELING SCHEME 
FOR PARAMETER OPTIMIZATION 

(MSO) 

(Outflow & 
matric potential) 

When to stop 
the loop? 
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OPTIMIZATION ALGORITHMS 

When do we want to stop the parameter optimization loop ? 

“Convergence criteria”: 

- When a parameter set attaining a threshold OF value is found 
 Example: OF(X)=0 -> no difference between Simobs and Measobs 

- When the best OF value has not significantly changed for long 
 Example: less than 1% improvement for more than 50 iterations 

- When too much time elapsed     
 Example: optimization loop has been running for 2 days 

- When too many iterations were ran     
 Example: optimization loop has been running for 105 iterations 

- Any combination of the previous criteria… 

INVERSE PROBLEM EXAMPLE 3 

Model: Jw(t,z) = K(h(t,z)) 

System properties: WRCparms & HCCparms unknown  for 2 soil types 

           Feddes water stress parms P2 & P3 unknown 

System response: θobs(t*,z*) & hobs(t*,z*)            ”*” for discrete obs. 

Δz 

Δ(h(t,z)+z) 

Initial cond.: h(θobs(t=0,z*)) & hobs(t=0,z*) 

Boundary cond.: Jw(t>0,z=0) = Irrig(t)  &  ∇h(t>0, z=L) = 0  &  ETobs(t) 

Δθ(t,z) =  
 Δz 

ΔJw(t,z) Δt 

Orchard soil water status monitoring 

θ = f1(h,WRCparms) 

K = f2(h,HCCparms) 

z=0 

z=L 

S(t,z) = ET(t) α(h,P2,P3) β(z) 
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INVERSE PROBLEM EXAMPLE 3 

Multi-objective optimization 
of 9 parameters (θs1,a1,n1,Ks1, 
a2,n2,Ks2,P2,P3)  using the 
Genetic Algorithm (global) 

Long-term trend 

Short-term dynamics 

INVERSE PROBLEM EXAMPLE 3 

Using the soil water content change “dSWC” to focus on the 
amplitude and travel time of the infiltration front signal 
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Probability distribution 
to be maximized  
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Probability distribution 
to be maximized w.r.t  

.)|(
t

p 

t


Current guess  

Markov Chain Monte Carlo (MCMC) method 

UNCERTAINTY ANALYSIS 

.)|(
t

p 

Proposal distribution )|(
t

Z 

Possible samples from )|(
t

Z 

UNCERTAINTY ANALYSIS 

MCMC proposal distribution z(.|.) 



5/15/2015 

18 

Always accept 

 MCMC – Acceptance of New Points Having Higher 
          Probability than the Old Point is 100%  
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New guess  
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UNCERTAINTY ANALYSIS 

MCMC acceptance rule: 

Accept if  > R ~ Uniform (0,1)  

MCMC –Acceptance of New Points Having Lower 
         Probability than the Old Point is Probabilistic  

If the  ratio is small, then probability of acceptance is small  
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MCMC acceptance rule: 

UNCERTAINTY ANALYSIS 
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Warning: Performance of a MCMC Sampler depends 
strongly on the choice of the Proposal Distribution  
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p 
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p 
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t


UNCERTAINTY ANALYSIS 

    LOCAL SEARCH ALGORITHMS: 

 Start from a single randomly chosen point in the parameter 
 space, and seek iterative improvement from this point 

 Examples:  Gradient Descent, Levenberg-Marquardt,  
   Simplex Search and Line Search   

    GLOBAL SEARCH ALGORITHMS: 

 Typically implement a number of different parameter 
 combinations simultaneously (called a population) and use 
 evolutionary principles of survival of the fittest to 
 iteratively improve this population  

 Examples:  Genetic algorithms, Differential Evolution,  
   Particle Swarm Optimization and Evolutionary 
   Strategies (Covariance Matrix Adaptation)  

 

OVERVIEW 
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1 – Multiple regions of attraction 
 
2 – UNCOUNTABLE local optima 
 
3 – Discontinuous derivatives 
 
4 – Long and curved ridges 
 
5 – Poor sensitivity                             

Derivative-free method 

Global search of space 

Choice of the optimization algorithm: 

OVERVIEW 

Well-posed inverse problems: 

 Test for global and local minima 

 Test for unique solutions 

 Independently measure parameters that are not 
sensitive to solution 

 Do not estimate highly correlated parameters 

 Include independently-measured information to 
objective function 

 Minimize number of optimized parameters 

 Minimize measurement errors 

 Estimate model error 

 Compare uncertainties of optimized parameters 

OVERVIEW 
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Other applications of inverse modeling: 

 Other soil hydraulic properties techniques, such as 
evaporation method, suction infiltrometer method and 
instantaneous profile method; 

 Estimation of solute and heat transport properties; 

 Estimation of root water and nutrient uptake parameters; 

 Effective field soil properties, and in multi-layered 
systems; 

 . . . . . . . . . . . . . . . . . . .  . 

 

OVERVIEW 

LIMITATIONS: 

 Inverse problems are not necessarily well-posed; 

 Selection of weighting factors; 

 Parameter estimates are valid for experimental 
range only; 

 Method requires a lot of experience 

Non-uniqueness 

Instability 

OVERVIEW 
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BENEFITS: 

 Mandates marriage of experimentation with numerical 
modeling; 

 Method is consistent, I.e. estimated hydraulic functions  are 
used in model predictions; 

 Uses transient measurements, as in real world; 

 Relatively fast method, and lends itself for automation 

OVERVIEW 
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WHY NEED FOR MEASUREMENT    
OF SOIL HYDRAULIC PARAMETERS ? 

 As input to water flow and contaminant 
transport models; 

 To characterize soil physical 
characteristics, including their spatial and 
temporal variability; 

 To correlate with other, more easily to 
measure soil physical properties, e.g. 
texture. 
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RESPONSE SURFACE ANALYSIS: 

Can also be used to investigate parameter 
sensitivity and parameter correlation 

ITERATIVE METHODS FOR PARAMETER ESTIMATION 

MANUAL PARAMETER ESTIMATION (HAND CALIBRATION) 

 Advantage: Simple to implement 

 Disadvantage: subjective, time-consuming  and   
   requires considerable experience 

 

COMPUTERIZED ALGORITHMS (AUTOMATIC CALIBRATION) 

 Advantage: Objective and more efficient 

 Disadvantage: Complicated and typically requires   
   programming experience and familiarity with 
   technical jargon and cluster computers 
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Global search methods can handle complex response 
surfaces with multimodal optima and are therefore 
capable of handling a relatively large number of 
parameters 

SOME PRELIMINARY CONCLUSIONS … 


