1- The following table lists measurements of volumetric water content with absolute values of the corresponding soil water pressure head for a soil sample with a bimodal pore size distribution.

Matric head (cm)	1	10	20	50	100	150	200	250	300	400	500	700	1000	2000	4000	6000
Water content	0.440	0.410	0.401	0.397	0.395	0.393	0.390	0.386	0.382	0.370	0.356	0.323	0.271	0.155	0.073	0.046
(cm ³ cm ⁻³)	0.440	0.410	0.401	0.397	0.393	0.393	0.390	0.386	0.382	0.370	0.336	0.323	0.271	0.155	0.073	0.046

- a- Use the RETC model to fit α , n and θ_r of the van Genuchten soil water retention model.
- b- Use the RETC model to fit α , n and θ_r of the Brooks and Corey soil water retention model.
- c- Use the MS Excel to fit α_1 , α_2 , n_1 , n_2 , w_1 and θ_r of the following bimodal soil water retention model:

$$\frac{\theta - \theta_{\rm r}}{\theta_{\rm s} - \theta_{\rm r}} = S_e = w_1 (1 + (\alpha_1 \mid h_m \mid)^{n_1})^{-m_1} + w_2 (1 + (\alpha_2 \mid h_m \mid)^{n_2})^{-m_2}$$

Note that $w_1 + w_2 = 1$, $0 \le w_1 \le 1$, $0 \le w_2 \le 1$, $m_i = 1 - (1/n_i)$. Also, assume that θ_s is known and equal to the water content value in the above table for h = 1 cm.

- 2- List the fixed and optimized parameter values, and plot the measured and fitted data (use a log-scale for the h-axis). Discuss results.
- 3- Repeat (1-c) and (2), but instead of the van Genuchten model, use a bimodal lognormal soil water retention model.