1- The following table lists measurements of volumetric water content with absolute values of the corresponding soil water pressure head for a soil sample with a bimodal pore size distribution.

Matric head (cm)	1	10	20	50	100	150	200	250	300	400	500	700	1000	2000	4000	6000
Water content ($\mathrm{cm}^{3} \mathrm{~cm}^{-3}$)	0.440	0.410	0.401	0.397	0.395	0.393	0.390	0.386	0.382	0.370	0.356	0.323	0.271	0.155	0.073	0.046

a- Use the RETC model to fit α, n and θ_{r} of the van Genuchten soil water retention model.
b- Use the RETC model to fit α, n and θ_{r} of the Brooks and Corey soil water retention model.
c- Use the MS Excel to fit $\alpha_{1}, \alpha_{2}, n_{1}, n_{2}, w_{1}$ and θ_{r} of the following bimodal soil water retention model:

$$
\frac{\theta-\theta_{\mathrm{r}}}{\theta_{s}-\theta_{r}}=S_{e}=w_{1}\left(1+\left(\alpha_{1}\left|h_{m}\right|\right)^{n_{1}}\right)^{-m_{1}}+w_{2}\left(1+\left(\alpha_{2}\left|h_{m}\right|\right)^{n_{2}}\right)^{-m_{2}}
$$

Note that $w_{l}+w_{2}=1,0 \leq w_{1} \leq 1,0 \leq w_{2} \leq 1, m_{i}=1-\left(1 / n_{\mathrm{i}}\right)$. Also, assume that θ_{s} is known and equal to the water content value in the above table for $h=1 \mathrm{~cm}$.

2- List the fixed and optimized parameter values, and plot the measured and fitted data (use a log-scale for the h-axis). Discuss results.

3- Repeat (1-c) and (2), but instead of the van Genuchten model, use a bimodal lognormal soil water retention model.

