Solving the 1D Richards Equation by Finite-Difference Approximation
Start with continuity:

$$
\frac{\partial \theta}{\partial \mathrm{t}}=\mathrm{C}(\mathrm{~h}) \frac{\partial \mathrm{h}}{\partial \mathrm{t}}=-\frac{\partial \mathrm{q}}{\partial \mathrm{z}}=-\frac{\partial}{\partial z}\left[-k \frac{\partial h}{\partial z}-k\right]=\frac{\partial}{\partial z}\left[k \frac{\partial h}{\partial z}\right]+\frac{\partial k}{\partial z}
$$

For vertical flux (z positive upwards), Darcy gives:

$$
\mathrm{C}(\mathrm{~h}) \frac{\partial \mathrm{h}}{\partial \mathrm{t}}=\frac{\partial}{\partial \mathrm{z}}\left[\mathrm{~K}(\mathrm{~h})\left(\frac{\partial \mathrm{h}}{\partial \mathrm{z}}+1\right)\right]=\frac{\partial}{\partial z}\left[K(h) \frac{\partial h}{\partial z}\right]+k^{\prime}(h) \frac{\partial h}{\partial z}
$$

Introduce finite-difference approximation $(\partial \rightarrow \Delta)$:

$$
\mathrm{C}(\mathrm{~h}) \frac{\Delta \mathrm{h}}{\Delta \mathrm{t}}=-\frac{\Delta \mathrm{q}}{\Delta \mathrm{z}}
$$

For numerical stability, C and q will be evaluated at the end of the time step, ie., at ' $\mathbf{j}+1$ ' ("fully implicit method"). Use notation $\mathrm{C}_{\mathrm{i}, \mathrm{j}+1}$ for $\mathrm{C}\left(\mathrm{h}_{\mathrm{i}, \mathrm{j}+1}\right)$ etc.

$$
C_{i, j+1} \frac{h_{i, j+1}-h_{i, j}}{\binom{\Delta t}{70}}=-\frac{q_{i+1 / 2, j+1}-q_{i-1 / 2 j+1}}{\binom{\Delta z}{<0}} \text { if } z>0 \text { porous. }
$$

Substitute Darcy, define $\mathrm{K}^{\prime}=\frac{\partial \mathrm{K}}{\partial \mathrm{h}}$ (analytically obtained):

$$
\begin{array}{r}
C_{i, j+1} \frac{h_{i, j+1}-h_{i, j}}{\Delta t}=\frac{K_{i+1 / 2, j+1} \frac{h_{i+1, j+1}-h_{i, j+1}}{\Delta z}-K_{i-1 / 2, j+1} \frac{h_{i, j+1}-h_{i-1, j+1}}{\Delta z}}{\Delta z} \\
+K_{i, j+1}^{\prime} \frac{h_{i+1, j+1}-h_{i-2, j+1}}{2 \Delta z} j+1
\end{array}
$$

Expand $K_{i+1 / 2 j+1}$ and $K_{i-1 / 2, j+1}$:

$$
\begin{array}{r}
C_{i, j+1} \frac{h_{i, j+1}-h_{i, j}}{\Delta t}=\frac{\frac{K_{i, j+1}+K_{i+1, j+1}}{2} \frac{h_{i+1, j+1}-h_{i, j+1}}{\Delta z}-\frac{K_{i-1, j+1}+K_{i, j+1}}{2} \frac{h_{i, j+1}-h_{i-1, j+1}}{\Delta z}}{\Delta z} \\
+K_{i, j+1}^{\prime} \frac{h_{i+1, j+1}-h_{i-1, j+1}}{2 \Delta z} \quad \downarrow \\
h_{i-1 j+1}
\end{array}
$$

Now re-arrange:

$$
\begin{aligned}
h_{i, j} \frac{-C_{i, j+1}}{\Delta t}= & h_{i-1, j+1}\left(\frac{K_{i-1, j+1}+K_{i, j+1}}{2(\Delta z)^{2}}-\frac{K_{i, j+1}^{\prime}}{2 \Delta z}\right)+ \\
& h_{i, j+1}\left(-\frac{K_{i, j+1}+K_{i+1, j+1}}{2(\Delta z)^{2}}-\frac{K_{i-1, j+1}+K_{i, j+1}}{2(\Delta z)^{2}}-\frac{C_{i, j+1}}{\Delta t}\right)+ \\
& h_{i+1, j+1}\left(\frac{K_{i, j+1}+K_{i+1, j+1}}{2(\Delta z)^{2}}+\frac{K_{i, j+1}^{\prime}}{2 \Delta z}\right)
\end{aligned}
$$

Defining

$$
\begin{aligned}
& a_{i}=\left(\frac{K_{i-1, j+1}+K_{i, j+1}}{2(\Delta z)^{2}}-\frac{K_{i, j+1}^{\prime}}{2 \Delta z}\right), \\
& b_{i}=\left(-\frac{K_{i, j+1}+K_{i+1, j+1}}{2(\Delta z)^{2}}-\frac{K_{i-1, j+1}+K_{i, j+1}}{2(\Delta z)^{2}}-\frac{C_{i, j+1}}{\Delta t}\right) \text {, } \\
& c_{i}=\left(\frac{K_{i, j+1}+K_{i+1, j+1}}{2(\Delta z)^{2}}+\frac{K_{i, j+1}^{\prime}}{2 \Delta z}\right), \quad f_{i}=h_{i j} \frac{-C_{i j+1}}{\Delta t}=h_{i j} * d_{i} \\
& A f=a_{i, j}-\frac{C_{i, j},+1}{\Delta t}, \\
& \text { (glathoin*din, where } d_{i}=-\frac{C_{i j+1}}{\Delta t}
\end{aligned}
$$

we can write the equation for an internal node ' i ' as follows:

$$
a_{\mathrm{i}} h_{\mathrm{i}-1, \mathrm{j}+1}+\mathrm{b}_{\mathrm{i}} \mathrm{~h}_{\mathrm{i}, \mathrm{j}+1}+\mathrm{c}_{\mathrm{i}} \mathrm{~h}_{\mathrm{i}+1, \mathrm{j}+1}=\mathrm{f}_{\mathrm{i}} \quad[16]
$$

Thus, for this type of approximation, the h-value at spatial node ' i ' at time ' $j+1$ ' depends only on the two nearest neighbors, ' $\mathrm{i}-1$ ' and ' $\mathrm{i}+1$,' as well as on $\mathrm{h}_{\mathrm{i}, j}$. In matrix notation, we have for a five-node system:

$$
\begin{gathered}
{\left[\begin{array}{ccccc}
b_{1} & c_{1} & 0 & 0 & 0 \\
a_{2} & b_{2} & c_{2} & 0 & 0 \\
0 & a_{3} & b_{3} & c_{3} & 0 \\
0 & 0 & a_{4} & b_{4} & c_{4} \\
0 & 0 & 0 & a_{5} & b_{5}
\end{array}\right]\left[\begin{array}{l}
h_{1, j+1} \\
h_{2, j+1} \\
h_{3, j+1} \\
h_{4, j+1} \\
h_{5, j+1}
\end{array}\right]=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4} \\
f_{5}
\end{array}\right] \dot{j}} \\
\text { UNKNOWN }
\end{gathered}
$$

Obviously, b_{1}, c_{1}, f_{1} and a_{5}, b_{5}, f_{5} have to obtained from the boundary conditions of the particular problem.

And remnte \& matix equations for $i=2$ and 4 : using [16] fide asidl.
$i=2$:

$$
a_{2} h_{1 j+1}+b_{2} h_{2 j+1}+c_{2} h_{3 j+1}=f_{2}
$$

$i=4$.

$$
\text { or } b_{2} h_{2 j+1}+c_{2} h_{3 j+1}=f_{2}-a_{2} h_{1, j+1} /\left[\begin{array}{l}
\text { krown } \\
\text { bomady } \\
\text { conolians. }
\end{array}\right.
$$

$$
a_{4} h_{3 j+1}+b_{4} h_{4 j+1}=f_{4}-c_{4} h_{5 j+1}
$$

yields.
thus if h boundary concrizions at both ends thon $[\hat{N}-2]$ equations and unkewns, when N is total \# of nodes. [Dirichlet boundary $]$
Hocmener, alternatively ore can defive condition
(h) $\frac{d H}{d z}$. flus boundmy condition, i.e., $q=-k(h) \frac{d H}{d z}$.
\Rightarrow Neumann b.r

Fluab.c: [Neumam b.c.]
Assifn ficticious gridpoints: ho anhle.
From [16]

$$
\begin{align*}
& a_{i} h_{i-i j+1}+b_{i} h_{i j+1}+c_{i} h_{i+j+1}=d_{i} h_{i j} \\
& a_{1} h_{0 j+1}+b_{1} h_{1, j+1}+c_{1} h_{2 j+1}=d_{1} h_{3 j} \\
& a_{5} h_{4 j+1}+b_{5} h_{5 j+1}+c_{5} h_{i+1}=d_{5} h_{5 j} \tag{16}
\end{align*}
$$

Now 7 unkroun's [ho Ahuph h_{6}] and 5 equatice's central differne appue.
$\frac{\text { Darg epration: }}{\text { for } i=1} \quad q_{i j+1}=-K_{i j+1}\left[\frac{h_{2 j+1}-h_{0 j+1}}{26 z}+1\right]$

$$
\frac{q_{1 j+1}}{K_{i j+1}}+1=-\left(\frac{h_{2 j+1}-h_{0 j+1}}{2 \sigma z}\right)
$$

or: $\quad h_{0 j+1}-h_{2 j+1}=2 \Delta z\left[\frac{q_{i j+1}}{k_{i j+1}}+1\right]=F L U T$ (is known from

$$
\Rightarrow h_{0 j+1}=h_{2 j+1}+\text { FLLLT } v
$$ flunb-c.)

thus, bo is deternud sum llot flux Atrigh sijoce is equee to Dresanted llans hr
l.e. Chech for $q_{1}=0$ inshancurtensoz
then $h_{0}=h_{2}+2 \Delta z \rightarrow$ yielens $q_{1}=\varnothing \quad$ ok
Sulntute resalt in [16] for $i=1$

$$
a_{1}\left[h_{2 j+1}+F[\operatorname{lor}]+b_{1} h_{1 j+1}+c_{1} h_{2 j+1}=d_{1} h_{1 j}\right.
$$

or $: b_{1} h_{1 j+1}+\left[a_{1}+c_{1}\right] h_{2 j+1}=d_{1} h_{1 j}-a_{1} *$ FLuT. [i7]
Similanly for borbom with $i=5$

$$
\begin{gathered}
q_{s j+1}=-k_{5 j+1}\left[\frac{h_{g_{j+1}}-h_{L_{j+1}}}{2 \Delta z}+1\right] \\
h_{b_{j+1}}-h_{i j+1}=-2 \Delta z\left[\frac{q_{5 j+1}}{k_{5 j+1}}+1\right]=\text { FLUB } \leftarrow \\
h_{6_{j+1}}=h_{y j+1}+F L U B .
\end{gathered}
$$

Subvituti in $[16]$ for $i=5$.

$$
a_{5} h_{4 j+1}+h_{5} h_{5 j+1}+c_{5}\left[h_{4 j+1}+F L U B\right]=d_{5} h_{5 j}
$$

or $\left[a_{5}+c_{5}\right] h_{4 j+1}+b_{5} h_{5 j+1}=d_{5} h_{5 j}-c_{5} F L u B$. [18]

Now hew madrio folution

$$
\left[\begin{array}{lcccc}
b_{1} & \left(a_{1}+c_{1}\right) & 0 & 0 & 0 \\
a_{2} & b_{2} & c_{2} & 0 & 0 \\
0 & a_{3} & b_{3} & c_{3} & 0 \\
0 & 0 & a_{4} & b_{4} & c_{4} \\
0 & 0 & 0 & \left(a_{5}+c_{5}\right) & b_{5}
\end{array}\right]\left[\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3} \\
h_{4} \\
h_{5}
\end{array}\right]_{j+1}\left[\begin{array}{l}
d_{1} h_{1} \\
d_{2} h_{2} \\
d_{3} h_{3} \\
d_{4} h_{4} \\
d_{5} h_{5}-c_{5} F L U T
\end{array}\right]
$$

(false)
buts Fichitious grids is comenient way to eppesent fledx bc, but not regpured. Altenasinel, use Taylor revies Espantion to expers h_{1} ar h_{5} from 2 ivner aodes and flux b.c. $\Rightarrow 3$ point-finle differme appotx.
See Vemusi \& Kaplus, 1988 ; pase 96.

Expand both h_{2} and 3 around h_{1}

$$
\begin{aligned}
& \text { 4. } h_{2}=4 h_{1}+\left.4 \cdot \frac{d h}{d z}\right|_{1} \Delta z+\left.4 \cdot \frac{d^{2} h}{d z^{2}}\right|_{1} \frac{(\Delta z)^{2}}{2}+\cdots \int_{-3}^{-2} \\
& h_{3}=h_{1}+\left.\frac{d h}{d z}\right|_{1}(2 \Delta z)+\left.\frac{d^{2} h}{d z^{2}}\right|_{1} \frac{(2 \Delta z)^{2}}{2}+\cdots
\end{aligned}
$$

fibtract

Use [19] for both Newman (flux) and Dirichlet (head) boundoy condition. Allow [19] for head bic.:

Set: $b_{1}=1$

$$
\begin{aligned}
& a_{1}+c_{1}=\varnothing \\
& d_{1} h_{1}-a_{1} F L U T=\text { ATOP. } \\
& a_{2}=\varnothing
\end{aligned}
$$

set bottom row:

$$
\begin{aligned}
& a_{5}+c_{5}=\varnothing \\
& b_{5}=1 \\
& d_{5} h_{5}-c_{5} F L U B=4 B O T \\
& c_{4}=\varnothing
\end{aligned}
$$

Now: same matier as Eq [17]

NELMANN Single Matns for both boondany condions

$$
\left[\begin{array}{ccccc}
b_{1} & \left(a_{1}+c_{1}\right) & 0 & 0 & 0 \\
a_{2} & b_{2} & c_{2} & 0 & 0 \\
0 & a_{3} & b_{3} & c_{3} & 0 \\
0 & 0 & a_{4} & b_{4} & c_{4} \\
0 & 0 & 0 & \left(a_{5}+c_{5}\right) & b_{5}
\end{array}\right] \times\left[\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3} \\
h_{4} \\
h_{5}
\end{array}\right]_{j+1}=\left[\begin{array}{l}
d_{1} b_{1}-a_{1} \mp L u T \\
f_{2} \\
f_{3} \\
f_{4} \\
\left.d_{5} h_{5}-c_{5} F L u B\right]_{j}
\end{array}\right.
$$

DIRICHLET

$$
\left[\begin{array}{ccccc}
1 & \phi & 0 & 0 & 0 \\
0 & b_{2} & c_{2} & 0 & 0 \\
0 & a_{3} & b_{3} & c_{3} & 0 \\
0 & 0 & a_{4} & b_{4} & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] *\left[\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3} \\
h_{4} \\
h_{5}
\end{array}\right]_{j+1}\left[\begin{array}{l}
\text { uTOP } \\
f_{2}-a_{2} \text { uTOP } \\
f_{3} \\
f_{4}-c_{4} \text { uBOT } \\
\text { uBOT }
\end{array}\right]_{j}
$$

From:

$$
\begin{aligned}
& a_{i} h_{i-1 j+1}+b_{i} h_{i j+1}+c_{i} h_{i+1+1}=f_{i} \quad[16] \\
& {\left[\begin{array}{l}
i=1, \ldots, 5
\end{array}\left|\begin{array}{l}
a_{1}=0 \\
c_{j}=0
\end{array}\right|\right.}
\end{aligned}
$$

Tridiagonal Alginth

$$
\begin{aligned}
& \left.\begin{array}{l}
A x=b \\
A=L \cdot U
\end{array}\right\} \quad L \cdot U \cdot x=b \\
& A=\left[\begin{array}{lllll}
b_{1} & c_{1} & & \\
a_{2} & b_{2} & c_{2} & 0 \\
& \ddots & \ddots & \\
0 & & a_{n} & b_{n}
\end{array}\right] \\
& L . U=A \varepsilon \\
& \text { solve to get } \alpha_{i} \text { and } \beta_{i} \\
& \text { of } L \text { and } U \text {. } \\
& \sqrt{V} \\
& \alpha_{1} * 1=b_{1} \rightarrow \alpha_{1}=b_{1} \\
& L=\left[\begin{array}{lllll}
\alpha_{1} & & & \\
a_{2} & \alpha_{2} & 0 \\
\vdots & \ddots & \\
0 & & \vdots & \\
& & a_{n} & \alpha_{n}
\end{array}\right] \\
& \alpha_{1} * \beta_{1}=c_{1} \rightarrow \beta_{1}=c_{1} / \alpha_{1} \\
& a_{2} * \beta_{1}+\alpha_{2} * 1=b_{2} \rightarrow \alpha_{2}=\cdots \\
& a_{2} * 0+\alpha_{2}^{\prime} * \beta_{2}=c_{2} \rightarrow \beta_{2}-\cdots \\
& \text { In General: } \\
& U=\left[\begin{array}{cccc}
1 & \beta_{1} & & \\
& 1 & \beta_{2} & 0 \\
& \ddots & 0 \\
0 & \ddots & \beta_{n-1} \\
& & \ddots & 1
\end{array}\right] \\
& \alpha_{1}=b_{1} \text { and } \beta_{1}=c_{1} / \alpha_{1} \\
& \alpha_{i}=b_{i}-a_{i} * \beta_{i-1} \\
& \beta_{i}=c_{i} \alpha_{i} \\
& \text { for } i=2, \ldots, N \text {. }
\end{aligned}
$$

Tridiagonal o Thomas Algorithm.
Solve $A x=b$, where $A=$ tridiagonal. and b is known.
Solve for x !
Set $A=L . U$ where L : Lower diagonal mathis
U: Upper diagonal mathis.
$L . U x=b \quad$ Set $y=U x$ and solve $L y=6$.
Solve for $[y]$ first, then solve for $[x]$.

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
\alpha_{1} & & & & \\
a_{2} & \alpha_{2} & 0 & \\
0 & \ddots & \ddots & \\
0 & \ddots & & \\
& & a_{n} & \alpha_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
\vdots \\
\vdots \\
\vdots \\
b_{n}
\end{array}\right]} \\
& \text { Then solve for } U_{x=y} \\
& \alpha_{1} y_{1}=b_{1} \rightarrow y_{1}=\frac{b_{1}}{\alpha_{1}} \\
& a_{\text {的 }} y_{1}+\alpha_{2} y_{2}=b_{2} \longrightarrow \\
& y_{2}=\frac{b_{2}-a_{2} y_{1}}{\alpha_{2}} \text { or } \\
& y_{i}=\frac{b_{i}-a_{i} y_{i-1}}{\alpha_{i}} \text { forbore } \\
& {\left[\begin{array}{cccc}
1 & \beta_{1} & & \\
& 1 & \beta_{2} & \\
& & \ddots & \vdots \\
& 0 & \ddots & \beta_{n-1} \\
& & &
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
\vdots \\
1 \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
\vdots \\
\vdots \\
\vdots \\
y_{n}
\end{array}\right]} \\
& \text { backward subsizution } \\
& x_{n}=y_{n} \\
& x_{n-1}=y_{n-1}-\beta_{n-1} x_{n} \\
& x_{i}=y_{i}-\beta_{i} * x_{i+1} \\
& i=(n-1), \ldots, 1
\end{aligned}
$$

Richards' Equation Flow Charts and Mass Balance Calculations:

In solving Eq. [21], $\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}$, and c_{i}, that include $\mathrm{C}_{\mathrm{i}}, \mathrm{K}_{\mathrm{i}}$, as a function of h , are at $(\mathrm{j}+1)$ time level. So, although they are in the coefficient matrix, their true values at $(\mathrm{j}+1)$ are unknown. How to solve???

At beginning of new time step, $\mathrm{t}+\Delta \mathrm{t}$, values of K_{ij} and C_{ij} are substituted for $\mathrm{K}_{\mathrm{ij}+1}$ and $\mathrm{C}_{\mathrm{ij}+1}$. The coefficient matrix is solved iteratively, until differences between $h_{i j+1}^{k+1}$ and $h_{i j+1}^{k}$ are smaller than error criterion, ε (EPS) . Realize that superscript (k) denotes the iteration number. This method is called the PICARD ITERATION.

FLOW CHART ONEDIM:

Define relative error between iterations as:

$$
E R R=\operatorname{Max}_{i=1,, N}\left|\frac{h_{i j+1}^{(k+1)}-h_{i j+1}^{k}}{h_{i j+1}^{(k+1)}}\right|
$$

If $\operatorname{ERR}>\varepsilon$, Re-iterate
If ERR $<\varepsilon, \mathrm{OK}$, and $h_{i j+1}^{k+1}$ is the solution. In ONEDIM, $\varepsilon=\mathrm{ERR}=0.001$
Program ONEDIM limits the nr of iterations NC to 50 .
If NC >50, reduce time step by one half, and start over.
So, how about time step size $\Delta \mathrm{t}=\mathrm{DT}$ (in ONEDIM):
This is done using mass balance calculations:

MASS BALANCE CALCUATIONS in ONEDIM

$\frac{\partial \theta}{\partial t}=-\frac{\partial q}{\partial z}$, for the complete soil domain. That is, between the surface and bottom boundary.
$d \theta d z=-d q \partial t \quad$ or $\quad \int \Delta \theta d z=-\int \Delta q d t$
$\Delta \theta=\theta_{i, j+1}-\theta_{i, j} \quad$ and $\quad \Delta q=q_{\text {in }}-q_{o u t}=\hat{q}_{1}-\hat{q}_{n}$

DELMO $=\int \Delta \theta d z=\int_{\text {DEPTH }}^{0}\left(\theta_{i, j+1}-\theta_{i, j}\right) d z \quad$ DELFLU $=-\int_{t_{j}}^{t_{j+1}}\left(q_{\text {in }}-q_{\text {out }}\right) d t$

SO:

Absolute mass balance, EMB = DELMO - DELFLU
Relative mass balance, REMB = EMB/DELFLU
Now:
If $\mathrm{EMB}>\mathrm{DEL} \quad(\mathrm{DEL}=0.001)$
Decrease $\Delta \mathrm{t}: \Delta \mathrm{t}=0.5 \Delta \mathrm{t}$
Start over again, i.e., reject $\mathrm{h}_{\mathrm{i}, \mathrm{j}+1}$ and start re-iterating.
IF EMB $<(0.1 x D E L)$
Increase $\Delta \mathrm{t}: \Delta \mathrm{t}=1.5 \Delta \mathrm{t}$
Now advance in time.
IF 0.1DEL $<$ EMB $<$ DEL
Advance in time,
But do not change Δt

