

Vadose zone characterization & monitoring, HYD210, 2015

- Soil moisture
- Soil water potential
- Soil water solute concentration
- > Telemetry
- Parameter optimimzation
- Field Applications

CZO Soil Moisture Sensors

ECH₂O-TM

MPS-1 Matric Potential

5TE Water Content, Temperature, Conductivity

EchoTM and TE– Decagon – laboratory calibration by immersion

EchoTM and TE– Decagon – laboratory soil calibration for KREW soil

Heat Pulse Probe (HPP) measurement

- Temperature, T
- Thermal properties
 - Heat capacity, C
 - Heat conductivity, λ
 - Thermal diffusivity, κ
 - Heat dispersion, D
- Hydrologic properties
 - Water flux, qw
 - Water content, $\boldsymbol{\theta}$
 - Electrical conductivity, EC_b 🖌

Heat transfer in variably saturated soil

• Heat	$\rho C_{p} \frac{\partial T}{\partial t} + \nabla \cdot q = Q$
≻ Heat flux	$\overline{q} = -\lambda \nabla T + \rho C_{p} T u$
 Heat capacity 	$\rho C_{p} = C_{bulk} = C_{s} (1 - \phi) + C_{w} \theta$
Water flow	$u = \left[-\frac{K}{K}\left(\theta\right)\nabla \overline{H}\right]\theta^{-1}$

Conventional Heat Pulse Probe (HPP)

HPP Darcy water flux measurement

Wireless HPP development

Heat pulse probe with solar panel and wireless

MPS – Decagon – laboratory calibration

MPS Calibration

CZO – White Fir Tree Monitoring- KREW

Tensiometer- Soil moisture Tension

From: Chapter 3: Soil water content and water potential relationships by D. Or and J.M. Wraith. In: Soil Physics Companion (4.W. Warrick, Ed.). CRC Press. 2002.

Wireless Networks-Wolverton

Soil Water Retention

Parameter Optimization by Inverse Modeling

Multi-step Outflow Experiment

Instruments list and functions:

- 1. Tensiometers: measures soil matric potential, range: 850 - 0 mbar, individuallycalibrated pressure transducers
- 2. Decagon 5TE sensors: measures soil water content, electrical conductivity, temperature
- **3. Decagon MPS-2 sensors**: measures soil matric potentials, range -4000 mbar 0
- 4. Neutron Probe: measures soil water content, large representative soil volume
- **5. Suction lysimeters** : is used to collect soil solution for nitrate analysis
- 6. Equilibrium-Tension Lysimeters: measures drainage below the root zone and collect soil solution samples for nitrate analysis

Multiple sensors at various depths and locations for each treatment plot

LEACHING RATES COMPUTED FROM TENSIOMETERS

Leaching only significant when deep soil is wet, with possible upwards capillary flow in the late summer

Inverse Modeling Improve soil hydraulic characterization

