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Dept Land, Air and Water Resources  
University of California Davis  Vadose zone characterization & 

    monitoring, HYD210, 2015 

  

        Soil moisture 

     Soil water potential 

     Soil water solute concentration 

     Telemetry 

     Parameter optimimzation 

     Field Applications 

Dept Land, Air and Water Resources  
University of California Davis 

Soil Moisture – neutron probe 
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Dept Land, Air and Water Resources  
University of California Davis 

Soil Water content-neutron probe 

Dept Land, Air and Water Resources  
University of California Davis 

Soil moisture-neutron probe 
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Dept Land, Air and Water Resources  
University of California Davis 

Soil moisture: Dielectric measurements 

Dept Land, Air and Water Resources  
University of California Davis 

Soil moisture – TDR 
(Time domain reflectometry) 
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Dept Land, Air and Water Resources  
University of California Davis 

Soil moisture: Capacitive probes 
(Charge time of capacitor increases with higher soil dielectric) 

CZO Soil Moisture Sensors 

MPS-1 
Matric Potential 

ECH2O-TM 
Water Content, Temperature 

5TE 
Water Content,  
Temperature, 
Conductivity 
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EchoTM and TE– Decagon – 

laboratory calibration by 

immersion 
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Insertion Tool for Echo TE Installation 
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Dept Land, Air and Water Resources  
University of California Davis 

Soil moisture: Heat pulse probe 
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Heat Pulse Probe (HPP) 
measurement 

• Temperature, T 

• Thermal properties 
– Heat capacity, C 
– Heat conductivity,  

– Thermal diffusivity,  
– Heat dispersion, D 

• Hydrologic properties 
– Water flux, qw 

– Water content,  
– Electrical conductivity, ECb 

 

same time 
+ 

same place 
+ 

same scale 
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Heat transfer in variably 
saturated soil 

• Heat 

 

 Heat 

 flux 
 

 Heat 

 capacity 

 

• Water flow 
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Thermal properties: 
Heat capacity, conductivity and diffusivity 

Hydrological properties: 
Water content and flux 
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Two-needle HPP 

Independent of Soil Type 

Multi-needle HPP 

soil heat flux measurements 
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Conventional Heat Pulse Probe 

(HPP) 
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Thin needles – 
analytical heat line source. 

∆Tud 

(Mori et al. 2003; 2005) VZJ 

Ring-heater button HPP – Max 

temperature rise 

• No needle deflection 

• Larger sensitivity to 
water content 

• Non Invasive 
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HPP Darcy water flux measurement 

Wireless HPP development 
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Heat pulse probe with 

solar panel and wireless 

Dept Land, Air and Water Resources  
University of California Davis 

Soil water potential: porous blocks 

WaterMark Gypsum Blocks 

MPS-1 Water Potential Sensor  



13 

MPS – Decagon – laboratory 

calibration 

MPS Calibration 
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MPS-1 Evaluations - Field 
One- point calibration 
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CZO – White Fir Tree 

Monitoring- KREW 
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Tensiometer- Soil moisture 

Tension 

Dept Land, Air and Water Resources  
University of California Davis 

Soil moisture tension 
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Dept Land, Air and Water Resources  
University of California Davis 

Soil Tensiometry 

Dept Land, Air and Water Resources  
University of California Davis 

Soil Water Tension 
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Advanced Tensiometer 

Dept Land, Air and Water Resources  
University of California Davis 

Soil water solution sampling 
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Dept Land, Air and Water Resources  
University of California Davis 

Soil Solution Sampling 
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In-situ soil solution nitrate 

measurement 
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Dept Land, Air and Water Resources  
University of California Davis 

Noninvasive soil salinity 

Dennis Corwin 

US Salinity Laboratory 

Riverside, CA 

Dept Land, Air and Water Resources  
University of California Davis 

Telemetry: groundwater level 
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Dept Land, Air and Water Resources  
University of California Davis 

Telemetry: rain gauge 

Dept Land, Air and Water Resources  
University of California Davis 

Telemetry: Soil moisture 
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Crossbow link 

Decagon link 

Isaacs link 

6 Watermarks, 10 Echo probes 

5 Decagon Echo probe sensors 

6 watermarks 

9 watermarks 

N 

S 

E W 

Wireless Networks-Wolverton 
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1 

2 

700 

701 

704 702 

703 

Site 1 Site 2 

Proposed configuration for Site 1 

Base station with 

Omni antennae 

Deploy from base station to Site 1 with proposed configuration and omit Site 2 

Current nodes in landscape (702 and 703 serve as relays to base) 

Crossbow Mote Network – 100 

yards between nodes 

Soil Water Retention 



23 

Dept Land, Air and Water Resources  
University of California Davis 

Soil Water Retention 

Parameter Optimization by Inverse Modeling 

Flowchart of inverse parameter estimation approach.

         Analysis Structure and Flowchart

Outflow 

Experiment

Numerical 

Simulation

Nonlinear 

Optimization

Start

........

      Outflow
Capillary Pressure

B.C. & I.C.

Soil Size

Fluid Properties

Input data files

Input 

files

     Interfacing 

Data Management

       Outflow
Capillary Pressure

ok?

Stop

yes

+

no

    New
parameters

    Initial
parameters

Constitutive

 parametric

    models

Combines experiment with modeling 

Yields both soil water retention and unsaturated hydraulic conductivity functions  
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Multi-step Outflow Experiment 
 

Air-bubble trap 

Pressure 

 Control 

Air pressure is applied 

Water collects 
in burette until 
equilibrium is 
established 

Soil core 
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Dept Land, Air and Water Resources  
University of California Davis 

Soil Water Retention 
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Efficient irrigation and fertigation practices  

across  California 
Objectives:  

• Develop improved irrigation water & 

      nitrate management guidelines in almonds  

• Focus on  reduced leaching practices 

• Establish field-scale soil water monitoring                                        

     protocol 

 

 Paramount Farms, Lost Hills 

Wireless Sensor Networks 

Instruments list and functions: 

1. Tensiometers:  measures soil matric 
potential, range: 850 - 0 mbar, individually-
calibrated pressure transducers 

2. Decagon 5TE sensors: measures soil water 
content, electrical conductivity, temperature 

3. Decagon MPS-2 sensors: measures soil 
matric potentials, range -4000 mbar – 0 

4. Neutron Probe: measures soil water content, 
large representative soil volume 

5. Suction lysimeters : is used to collect soil 
solution for nitrate analysis 

6. Equilibrium-Tension Lysimeters: measures 
drainage below the root zone and collect soil 
solution samples for nitrate analysis 
 

Multiple sensors at various depths and locations for                     
  each treatment plot 
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Paramount Farms (Lost Hills): 
 Fanjet versus Surface Drip 

40cm 

200cm 
A B 

 Darcy Flow Approach : Tensiometers below root zone  

                                               Tree plot scale 
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Improved Deep 
Tensiometer 
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Leaching only significant when deep soil is wet, with  

  possible upwards capillary flow in the late summer 

LEACHING RATES COMPUTED FROM TENSIOMETERS 

Gradient 

Leaching 

DRIP FAN JET 

Matric potential 

High uncertainty 

                 Inverse Modeling 

   Improve soil hydraulic characterization 

     Typically, field-scale variations 

in soil texture and soil layering 

are huge 
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                 Soil Layering – Inverse Modeling 

          Field-scale effective Hydraulic Conductivity 


