Estimation of Multi-Dimensional Root Water and Nutrient Uptake Rates under Time-Varying Soil Moisture Conditions
Jan W. Hopmans and colleagues
University of California, Davis

Example of CMT for nondestructive 3D plant root measurements

Experimental Setup

Heeraman, Hopmans and Clausnitzer
Plant & Soil, 1997

ROOT FUNCTIONING OF WATER & NUTRIENT UPTAKE:

HISTORICAL POINT-OF-VIEW

OUT-OF-SIGHT = OUT-OF-MIND
(Clothier and Green, 1997)

RESULT:
MOSTLY EMPIRICAL RELATIONSHIPS BETWEEN CROP YIELD AND RESOURCE AVAILABILITY

GOAL:
maximize yield and minimize plant stress

Grain yield (ton ha⁻¹)
N or water application
KNOWLEDGE GAP ON PLANT RESPONSE OF WATER AND NUTRIENT LIMITATIONS TO CROP PRODUCTION

THIS IS IMPORTANT

INCREASINGLY, CONTRAINTS BECAUSE OF:

- WATER LIMITATIONS
- ENVIRONMENTAL CONCERNS

EXAMPLES:
- Micro-irrigation and Fertigation
- Deficit Irrigation and Partial root zone drying
- Agroforestry
- Bioremediation and Phytoremediation

CURRENT NEED:

COMBINE SOIL WITH PLANT EXPERTISE.

TO BETTER UNDERSTAND CONCEPTS AND PROCESSES OF WATER AND NUTRIENT STRESSES ON CROP GROWTH

SINCE THE REALITY IS THAT BOTH SOILS AND ROOTS ARE HETEROGENEOUS

AND

BOTH WATER AND NUTRIENT DISTRIBUTION ARE VARIABLE IN BOTH SPACE AND TIME

Overall root transport is controlled by local variations in root water and nutrient uptake

Clothier and Green, 1997

Progress requires:

- Multi-dimensional modeling approach.
- Understanding of plant’s response to spatially-distributed soil water and plant-available nutrients, ??
- Additional experimental data
Comprehensive multi-dimensional SPAC approach (Clausnitzer and Hopmans, 1994)

DYNAMICS IN SOIL WATER FLOW AND TRANSPORT

WATER:
\[
\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial x} \left(K \frac{\partial \psi}{\partial x} + K'' \right) - S(x, \psi, \psi_0)
\]

NUTRIENT:
\[
(\theta + \rho_k) \frac{\partial c}{\partial t} = \frac{\partial}{\partial x} \left(\Theta D_c \frac{\partial c}{\partial x} \right) - J_w \frac{\partial c}{\partial x} - S^*.
\]

COUPLED WATER AND NUTRIENT UPTAKE
(microscopic approach, using two-compartment model, with membrane separating apoplast from symplast)

\[
J_{\text{water}} = L(\Delta P - \sigma \Delta \Pi)
\]

\[
J_{\text{solute}} = \omega \Delta \Pi + (1 - \sigma)C_{\text{soil}}J_{\text{water}} + J^*
\]

- σ: reflection coefficient
- ω: effective permeability of membrane

If $\sigma = 1$, then $\omega = 0$ (semi-permeable membrane)
If $\sigma = 0$, then $\omega = 1$ (diffusion across membrane)
J^*: Active nutrient uptake

PATHWAYS FOR WATER AND NUTRIENT THROUGH PLANT ROOT
Direction of flow towards xylem

Cortex
Endodermis
Stele
ACTIVE NUTRIENT UPTAKE (J^*)
(or transport against driving forces: chemical water potential)

Passive nutrient transport – apoplastic pathway

Active nutrient transport – symplastic pathway

I. ROOT WATER UPTAKE

Microscopic: \[J_{water} = \frac{\psi_m - \psi_s}{R_s + R_p} \]

From single root to root zone domain

Macroscopic:
\[\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial z} \left[K(\psi_m) \frac{\partial \psi_s}{\partial z} \right] - S(z,t) \]
\[T_{act} = \int_{RZ} S dz = \sum_{i=1}^{N} S_i \Delta z_i \]

HOW TO FIND MULTI-DIMENSIONAL ROOT WATER UPTAKE PARAMETERS?

- Conduct multi-dimensional experiment
- Construct a multi-dimensional root water uptake model
- Integrate root uptake into multi-dimensional water flow model
- Compare experimental with numerical data
- Minimize their residuals

PARAMETER OPTIMIZATION BY INVERSE MODELING

Effectively: Model Calibration
EXPERIMENTAL LAYOUT OF THREE-DIMENSIONAL SOIL MOISTURE MEASUREMENTS (ALMOND TREE)

Multi-dimensional root water uptake & soil hydraulic parameters
(Vrugt, Hopmans and Simunek, SSSAJ and Water Resources Research)

Solve unsaturated water flow equation for three-dimensional soil domain, with root water uptake term (S)

\[
\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial x_i} \left[K \left(K^m_{ij} \frac{\partial \psi}{\partial x_j} + K^s_{ij} \right) \right] - S(x, y, z)
\]

SIMULATION MODEL: HYDRUS-3D

MULTI-DIMENSIONAL ROOT WATER UPTAKE MODEL

\[
RDF(x, y, z) = \left(\frac{1-x}{X_0} \right) \left(\frac{1-y}{Y_0} \right) \left(\frac{1-z}{Z_0} \right)^{x+y+z-1}
\]

Unstressed Normalized Root Water Uptake, at a point

\[
S_{\text{max}}(x, y, z) = \frac{X_0 Y_0 Z_0}{X_0 Y_0 Z_0} RDF(x, y, z) T_{\text{pot}}
\]

Water Uptake under Water-Stressed Conditions

Water Stress Response Function

\[
\alpha(\psi) = \frac{1}{1 + \left(\frac{\psi - \psi_{a, max}}{\psi_{a, max}} \right)^{\beta}}
\]

Actual Water Uptake:

\[
T_{\text{w}}(x, y, z) = \frac{1}{X_0 Y_0 Z_0} \int_{0}^{x} \int_{0}^{y} \int_{0}^{z} S(\psi) \psi dxdydz
\]

Actual Plant Transpiration:

\[
T_{\text{pl}}(x, y, z) = \frac{1}{X_0 Y_0 Z_0} \int_{0}^{x} \int_{0}^{y} \int_{0}^{z} S(\psi) \psi dxdydz
\]
PARAMETER OPTIMIZATION OF THREE-DIMENSIONAL ROOT WATER UPTAKE MODEL

- Obtain field measurements of multi-dimensional soil moisture during a 2-week monitoring period;
- Simulate multi-dimensional soil moisture distribution, using transient HYDRUS-3D model;
- Optimize root water uptake & soil hydraulic parameters using inverse modeling, minimizing residuals of measured and simulated water contents.

Computation of T_{pot}

$$T_{pot, almond} = ET_{almond} - E_s$$

$$ET_{almond} = K_r ET_0$$
Flexibility of two-dimensional root water uptake model

\[\beta(r,z) = \left(1 - \frac{z}{z_r}\right) \left(1 - \frac{r}{r_u}\right) e^{-\frac{z}{z_r} + \frac{r}{r_u}} \]

TWO-DIMENSIONAL SOIL MOISTURE OBSERVATIONS

(Vrugt et al., 2001)

THREE-DIMENSIONAL SOIL MOISTURE AND ROOT WATER UPTAKE DISTRIBUTION

Optimization - Minimize Objective Function

\[\Phi(p, \theta) = w_i \sum_{i=1}^{n} \left[\theta_i(x,t) - \theta(x,t,p) \right]^2 \]

\(\theta \): vector with optimized parameters
Simulated (after optimization) verses Measured Water Content

RMSE = 0.0180
R² = 0.92

Measured water content [m³ m⁻³]
Simulated water content [m³ m⁻³]

Soil hydraulic functions, for instrumented field plot

Volumetric water content [m³ m⁻³]

Comparison of one-, two, and three-dimensional uptake distributions

Multi-dimensional root water uptake may have enormous influence on spatial and temporal variability of root zone leaching
II. ROOT NUTRIENT UPTAKE

Microscopic: \[J^* = \frac{J_{\text{max}}^* (c - c_{\text{min}})}{K_m + (c - c_{\text{min}})} \]

From single root to root zone domain

Active nutrient uptake: \[N_i = RDFN_i J_i^* \]

Macroscopic:
\[\frac{\partial \tilde{c}}{\partial t} = \frac{\partial}{\partial x_i} \left(\theta D_{ij} \frac{\partial \tilde{c}}{\partial x_j} \right) - J_{\text{p}} \frac{\partial \tilde{c}}{\partial x_i} - S_i \]

For each compartment i, partition between passive and active uptake:
\[S_i' = f_1 S_i c_i + f_2 N_i \]

ACTIVE TRANSPORT IS CONSIDERED EQUIVALENT TO ENZYME KINETICS (MICHAELIS-MENTEN)

\[J^* = \frac{J_{\text{max}}^* (c - c_{\text{min}})}{K_m + (c - c_{\text{min}})} \]

Plateau or linear increase ??

SUPPLY-CONTROLLED ACTIVE NUTRIENT UPTAKE

\[J_s = J_{s,\text{conv}} + J_{s,\text{diff}} \]

Soil solution concentration

Distance from root surface 0 Nutrient influx = Active nutrient uptake \((J^*) \)
PARTITION NUTRIENT UPTAKE BETWEEN PASSIVE AND ACTIVE UPTAKE

\[S' = f_1 Sc + f_2 N \]

- **\(S' \)**: Total nutrient uptake
- **\(Sc \)**: Passive nutrient uptake (with water uptake - apoplastic pathway)
- **\(N \)**: Active nutrient uptake (symplastic pathway)
- **\(f_1 \) and \(f_2 \)**: May be a function of nutrient availability and plant nutrient demand or deficit

Define active nutrient uptake (\(N \)) using RDFN (as water uptake), to characterize distribution of active uptake sites

\[S' = f_1 Sc + f_2 N \]

\[N_{pot} = \int_{KZ} J^* N = RDFN_1 \times N_{pot} \]

\[N_i = a(\text{plant N deficit}) \times N_{max,i} \]

\[N_{act} = \int_{KZ} N_i \]

RECOMMENDATION 1

The overall functioning of the plant is controlled by local variations in uptake rates.

Research is needed to integrate local uptake variations to total plant uptake as a function of soil environmental factors (water and nutrient stresses).

RECOMMENDATION 2

A multi-dimensional approach is essential to improve model predictions of plant response to water and nutrient stresses and nutrient loads to the groundwater.
RECOMMENDATION 3

Dedicated experiments are needed to test and calibrate multi-dimensional root water and nutrient uptake models, and to better understand the partitioning between passive and active nutrient uptake.

NEW Heat Pulse Probe DESIGN

To measure:
- Soil thermal properties
- Soil water content
- Bulk soil and solution EC
- Darcy water flux
- Solute dispersivity

Proposed Growth Chamber Experiment