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ABSTRACT
The scaling theory approach has been widely used as an effective

method to describe the variation of soil hydraulic properties. In con-
ventional scaling, reference retention curves and scaling factors are
determined from minimization of residuals. Most previous studies
have shown that scaling factors are lognormally distributed. In this
study, we derived physically based scaling factors, assuming that soils
are characterized by a lognormal pore-size distribution function. The
theory was tested for three sets of retention data. Two data sets
included samples of a sandy loam soil, and one set included samples
of a loamy sand soil. Individual soil water retention data were fitted
to the retention model proposed by Kosugi (1996). The parameters
of the model are the mean and variance of the log-transformed pore-
radius distribution. Scaling factors and parameters of the reference
curve were computed directly from the parameters of individual soil
water retention functions. Assuming that (i) the soil pore radius of a
study area is lognormally distributed and (ii) soil samples are obtained
from random sampling of effective soil pore volume from the study
area, we have proposed a theoretical interpretation of the lognormal
scaling factor distribution. Scaling results for all three data sets com-
pared well with those obtained using the conventional scaling method.

DESCRIBING WATER FLOW in soils requires knowledge
of the soil hydraulic properties. The hydraulic

properties of unsaturated soil are represented by the
water retention characteristic (the relationship between
the volumetric soil water content, 6, and the capillary
pressure head, h, and the unsaturated hydraulic conduc-
tivity, K, function. Both properties are variable in het-
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erogeneous soils, or in field plots that are apparently
homogeneous. The concept of similar media was intro-
duced by Miller and Miller (1956) to develop scaling
theory for the analysis of such variations in field soils.
Scaling provides a means to relate hydraulic properties
of different soils to those of a reference soil using scaling
factors. In recent years, the scaling theory approach has
been widely used as an effective method to describe the
variation of soil hydraulic properties.

Previous studies proposed different methods to deter-
mine scaling factors for soil hydraulic properties. While
Russo and Bresler (1980) suggested the scaling method
to compute reference hydraulic properties directly from
observed hydraulic data, most previous studies em-
ployed functional models for the reference retention
and conductivity curves. Warrick et al. (1977) adopted
polynomial functions to express reference h(6) and K(Q)
curves. Simmons et al. (1979) used a logarithmic func-
tion for the scaling of the water retention characteristic.
The combined soil water retention-hydraulic conductiv-
ity model proposed by Brooks and Corey (1964) was
used by Ahuja and Williams (1991) in the scaling of
6(/z) and K(h) relationships. Clausnitzer et al. (1992)
proposed a method of simultaneous scaling of h(Q) and
K(Q) curves by employing the combined soil water re-
tention-hydraulic conductivity model proposed by van-
Genuchten (1980). Moreover, Zhang et al. (1993)
showed scaling results for four different soil water reten-
tion models. Most studies showed that scaling factors
are lognormally distributed (e.g., Warrick et al., 1977;
Hopmans, 1987; Clausnitzer et al., 1992; Zhang et al.,
1993).

Abbreviations: C, conventional; PB, physically based; PDF, probabil-
ity density function; REV, representative elementary volume; RSS,
residual sum of squares.
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On the basis of the lognormal distribution of scaling
factors, stochastic models have been proposed to ana-
lyze the effects of variable soil hydraulic properties on
saturated and unsaturated soil water flow. By employing
Monte Carlo simulation and using the scaling factor as
a lognormally distributed random variable, Clapp et al.
(1983) concluded that heterogeneity in soil hydraulic
properties may account for approximately 75% of the
observed standard deviation of field water content.
Ahuja et al. (1984) examined infiltration phenomena
by using lognormally distributed scaling factors for the
saturated hydraulic conductivity. Assuming that the
scaling factor distribution function is lognormal, the sta-
tistical properties of soil water regime (Hopmans and
Stricker, 1989; Kim et al., 1997) and solute transport
(van Ommen et al., 1989; Bresler and Dagan, 1979) for
large soil domains (agricultural field, watershed) were
analyzed. Most recently, Nielsen et al. (1998) concluded
that scaling opportunities to describe field soil water
behavior continue to appear both promising and pro-
vocative.

Thus, many studies have demonstrated the potential
of scaling to describe variability of soil hydraulic proper-
ties. However, these studies have not emphasized the
statistical significance of the scaling factor distribution.
No theoretical interpretation has been proposed for the
apparent lognormal distribution of scaling factors. This
is most likely so because most previous studies used
empirical curve-fitting equations for soil hydraulic prop-
erties, which do not address the physical significance of
their parameters. The objectives of this study were to
present a physically based method of scaling soil water
retention curves using the physically based retention
model introduced by Kosugi (1996) and to propose a
theoretical interpretation for scaling factor distribu-
tions. The Kosugi (1996) model assumes the soil pore
radii to be lognormally distributed. Consequently, the
parameters of the retention model have physical signifi-
cance and are directly related to the statistical properties
of the soil pore-size distribution. The lognormal soil
pore-size distribution has been assumed in some previ-
ous studies. Based on the fact that many soils show
a lognormal particle-size distribution, Brutsaert (1966)
proposed the lognormal distribution to describe pore-
size distribution. Gardner (1956) introduced the possi-
bility of characterizing soil structure using a lognormal
pore-size distribution, assuming a relationship between
aggregate size and pore size. Most recently, Nimmo
(1997) proposed such a relationship and subsequently
derived a model to describe the soil structural influence
of soil water retention using a lognormal aggregate-size
distribution model. Pachepsky et al. (1995) derived the
fractal dimension of soil pores assuming a lognormal
pore-size distribution.

THEORY
After establishing the functional form of the soil water

retention model for soils with a lognormal pore-size distribu-
tion, we show how statistical theorems provide physically
based parameters for the soil water retention function of a
study field. Based on the similar media concept, the distribu-

tion of physically based scaling factors is derived that, com-
bined with the reference retention curve, characterizes the
spatial variability of soil water retention data.

Lognormal Distribution Model for Soil Pore-Size
Distribution and Water Retention Curve

The probability density function (PDF) of soil pore radius
r, p(r), is defined as (Brutsaert, 1966)

p(r) = dSJdr [1]
where 5e is the effective saturation

Se = (6 - er)/(6, - 8r) [2]
described by 6S and 6r, denoting the saturated and residual
volumetric water content (L3 L~3), respectively, and the di-
mension of p(r) is LT1. In Eq. [I], p(r)dr = dSe, represents
the volume of pores of radius r —> r + dr per unit effective
pore volume of soil. The effective pore volume is defined as
the product of the total soil volume and the effective porosity,
(6S - 6 r) , of the soil. Integrating Eq. [1] yields the cumulative
pore-radius distribution function:

Se(r) = p(r)dr [3]

Consequently, 5e(r) represents the effective saturation of the
soil when the pore volume fraction occupied by pores with a
radius equal to or smaller than r is filled with water. Here, r
is associated with the capillary pressure head, h (L), (h > 0
for unsaturated soil) by the capillary pressure function
h = 2y cosfi/pgr = Air or In h = In A — In r [4]
where -y is the interfacial tension, p is the contact angle, p is
the density of wetting fluid, and g is the acceleration of gravity.
The value of A for air-water-soil systems is 0.149 cm2. On
the basis of the direct correspondence of r and /z, the function
Se(r) is transformed into Se(h), which is the soil water reten-
tion curve.

The PDF of the natural logarithm of pore radius (Inr) is
expressed as

/(In r) = dSJd In r [5]
Consequently, /(In r)d In r = dSe represents the volume of
full pores of log-transformed radius In r —> In r + d In r per
unit effective pore volume of medium. Similarly, the PDF of
the natural logarithm of pore capillary pressure head (In h)
can be defined as

g(ln h) = dSJd In h [6]
Hence, g(ln h)d In h = dSe represents the volume of full
pores in which water is retained by log-transformed capillary
pressure In h to In h + d In h per unit effective pore volume
of medium. The relationship between p(r), /(In r), and g(ln
h) is expressed by

p(r)dr = /(In r)d In r = g(ln h)d\nh = dSt [7]
An analytical expression for the effective saturation, 5e, is
derived by integrating /(In r), or g(ln h):

Se(lnr) = f(lnr)dlnr

Se(ln/0 = -[ g ( In /Odin/ i

[8]

[9]

Kosugi (1996) applied a lognormal distribution law to the
PDF of the soil pore radius to derive a combined soil water
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retention-hydraulic conductivity model. Based on this model,
/(In r) is expressed by the normal distribution A^ln rm, a2):

/(In r) = 1 exp (In r - In rm)2

2a2 [10]

where In rm and a2 are the mean and variance of In r, respec-
tively. The parameter rm is the geometric mean pore radius
and is equal to the median pore radius [5e(ln rm) = 0.5] based
on the assumption of the lognormal distribution. Figure la
shows a graphical representation of Eq. [10]. The correspond-
ing expression for g(ln h ) is

g(ln h) = 1 exp (In h - In hm)2

2o-2 [11]

Equation [11] indicates that In h obeys the normal distribution
N(ln /zm, a2). The mean of g(\n h),\n hm, is related to the mean
of/(In r), In rm, by In hm = In A - In rm, whereas the variance
of g(ln h), a2, is identical to the variance of /(In r). The
distribution described by Eq. [11] is shown in Fig. Ib. Substitut-
ing Eq. [10] and [11] into Eq. [8] and [9], respectively, and
integrating yields expressions for the cumulative distribution
functions Se(ln r) and 5e(ln h):

5e(ln f) =

Se(ln h) = Fj

a
[12]

a
[13]

where FJ*x) is the normal distribution function defined as

1
2<rr J_ .

exp(-jc2/2)dx [14]

Graphs of Eq. [12] and [13] are presented in Fig. Ic and Id,
respectively. From Fig. Id it is clear that hm is the capillary
pressure head for 5e = 0.5. The parameter <r is defined such
that 5e(ln hm - <r) - 5e(ln hm + a) = 0.68 (Fig. Id) and
consequently controls the magnitude of changes in Se around
the inflection point. The retention model expressed by Eq.

[13] performs well for observed water retention data sets of
many soil types (Kosugi, 1994, 1996, and 1997). It can be shown
that an alternative equivalent expression for the function in
Eq. [13] is

\n h - Ino / i i \Se(ln h)=-

where erfc denotes the complementary error function.

ri C1[15]

Statistical Characterization of Soil Sampling
We consider that soil samples are collected at different

locations within a study area. We treat the total effective soil
pore volume in the study area as the population, whereas each
soil sample is obtained from random sampling of effective soil
pore volume from the population. Based on previous studies
(Kosugi, 1996 and 1997), the PDF of In r for each soil sample
is expected to describe the normal distribution:

/(In r} = 1 exp (In r - In rm,-):

2of
[16]

where In rm, and of denote the mean and variance of In r,
respectively, for soil sample i (i = 1, 2, ...,/; I is total number
of soil samples). Soil sample size is assumed to be constant
(i.e., each soil sample has the same effective pore volume). It
is assumed that the PDF of In r for the population (i.e., the
study area) is represented by the normal distribution:

/•(In r) = exp (In r - In rm.)2

2ai
[17]

where In /> and cr2 denotes the mean and variance of In r,
respectively, for the population.

In most soil sampling procedures, the sample size is small
relative to the population size (i.e., the effective pore volume
of a soil sample is small relative to that of the study field). In
such cases, the sample mean is normally distributed with a
mean value equal to the population mean (Spiegel, 1975)
only if the samples are drawn from a normally distributed
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Fig. 1. Probability density functions (a)/(In r) and (b) g(ln h), and cumulative distribution functions (c) 5e(ln r) and (d) 5e(ln h) with the median

pore radius (In rm) = -5.9 (rm = 2.7 X 10~3 cm), the median capillary pressure head (In Am) = 4.0 (hm = 55 cm), and variance (or2) = 1.0.
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population. Consequently, under the conditions assumed in
this study, the sample mean, In rmi, is normally distributed
with its mean equal to the population mean, In rm., or

In rm. = Mean(ln /•„,,,) = - 2f=i In V. [18]

The population variance, cri, can be written as the sum of the
mean of the sample variances, Mean(of) = (1/7) £'=icr2, and
the variance of the sample means, Var(ln rml) (see Appendix
A for its derivation), or

al = Mean(of) + Var(ln rm,,-) [19]
As the volume of a soil sample approaches the representative
elementary volume (REV) of the study area, the average of
In r, In rm/, for all samples will coincide, since geometrical
aspects are preserved as the centroid of the REV is moved
from one place to another (Baveye and Sposito, 1984). In this
situation, Var(ln rmj) will be zero and the value of <jl will be
equal to Mean(of).

Physically Based Scaling Approach
Based on the similar media concept, the microscopic struc-

tures of soils are assumed to be identical (Warrick et al., 1977;
Kutilek and Nielsen, 1994), and the soils differ only by their
microscopic length scale, which is characterized by a scaling
factor. The scaling factor, a,, is defined as the ratio of a micro-
scopic characteristic length, \,, of soil sample i to the character-
istic length, \, of a reference soil:

a, = \,/X [20]•™( • ~r l_— — j

Defining the pore radius r as the microscopic characteristic
length, Eq. [20] becomes

ct, = rjr or In a, = In r, — In r [21]
where r\ and r are the largest water-filled pore radii at a specific
volumetric water content for sample ; and the reference soil,
respectively. Based on the similar media concept, each soil
sample has identical saturated and residual water content val-
ues. Hence, Eq. [21] holds for all rt and r at equal effective
saturation values.

As an example, Fig. 2 shows the PDF /(In r) for a soil
sample ;', /(In r), and for a reference soil, /(In r). Since the
similar media theory assumes that each soil sample is charac-
terized by a single scale factor only, of values for each sample
i and the variance of In r for the reference soil, cr2, are assumed
identical. Moreover, In rm, and In rm represent the mean of
the PDF/(In r) and/(In r), respectively. Since rmt is the pore
radius for which the effective saturation Se is equal to 0.5, rmj
is a suitable representative pore radius to characterize soil

Meanynrmj)=lnrm, = In/;

In a, =lnrmj. -\nfm

Fig. 2. Schematic representation of the probability density function
(PDF) of the lognormal distribution of the pore radius (In r) for
soil sample /./(In r), and for reference soil,/(In r).

water retention curves. Hence, we define rm, as the microscopic
characteristic length scale rather than an arbitrary pore radius.
Consequently, scaling factors are defined by

«i = rmj/fm or In a, = In rmj - In [22]
A graphical representation of Eq. [22] is given in Fig. 2, where
it is clearly shown how In a, can be inferred from the mean
values of the PDF for the sample i and the reference soil.
Since the sample mean, In rm>,, is normally distributed under
the conditions assumed in this study, Eq. [22] also shows that
In a; is normally distributed. That is, the scaling factor obeys
a lognormal distribution. From Eq. [22] the variance of In a,,
Var(ln a,), is equal to the variance of In rml, Var(ln rml), so
that Eq. [19] becomes

o-l = Mean (of) + Var(ln a;) [23]
Thus, the variance of log-transformed scaling factors is de-
fined as the difference of the total variance of In r in the study
area, ai, and the expected variance of In r within soil samples,
Mean(of).

Since by definition the scaling factor for the reference soil
is equal to one (Eq. [20]), earlier scaling studies assumed the
arithmetic average of scaling factors equal to unity (Peck et
al., 1977):

Mean(a,) = - [24]

This constraint appears suitable for data with normally distrib-
uted scaling factors. However, since scaling factors have been
found to be lognormally distributed, we use the constraint
that the geometric mean of scaling factors is unity:

Y" i'=1 a, = 1 so that Mean(ln a,) = - S;=i In a, = 0

[25]
After substitution of Eq. [22] into Eq. [25], it can be shown
that In fm is computed from

In rm = In rm, = Mean(ln rm,() = - 2'=i In rm4 [26]

Using the scaling theory approach as outlined above, the PDF
of In r for the reference soil, /(In r), is defined by

/(In r) = 1 ( l n r - l n r m ) 2

</2<7T<7 L 2CT2 J

where In rm is equal to Mean(ln rm4), and a2 is computed as
the mean of the sample variances, Mean(of) (Fig. 2).

Scaling of Soil Water Retention Curves
Based on the pore-radius distribution expressed by Eq. [16]

and [17], the respective functional expressions for the soil
water retention curves, representative for the individual soil
samples and the study area, are obtained:

_ /In hm) - In h
"Je.i ~ "n\

\ CT,

In hm. - In hSt. = FJ
CT.

[28]

[29]

where In hmi = In A — In rm/ and In hm» = In A — In rm.. The
parameters In /zm/ and In hm, represent the mean In h values
for sample i and the study area, respectively. Based on Eq.
[27], the water retention function for the reference soil is
defined by
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<> = F-<Je rt\
In hm - In h

cr [30]

where In hm (= In A - In rra) represents the mean In h
value for the reference soil. Since both In fm and In rm«
are equal to the mean of In rm, (Eq. [26]), In hm is
computed from

In hm = In hm, = Mean(ln &„,,-) = - 2'=i In hm,, [31]

The variance for the reference soil, cr2, is computed as the
mean of the sample variances, Mean(o-j2). Moreover, scaling
factors defined by Eq. [22] can be computed directly from

a; = hjhm4 or In a; = In hm - In [32]
The mean In h value, In hmj, for sample / is related to the

mean In r value, In rm,, by In hm ,, = In A - In rm ,. Since In rm ,•
is normally distributed under the assumed conditions, In hmj
is also normally distributed. Analogous to Eq. [19], the total
variance of In h for the study area, cr2, can be written in terms
of the expected variance of In h within soil samples, Mean(cr2),
and the variance of mean In h values between soil samples,
Var(ln hmj):

= Mean(cr2) + Var(ln hmj)

MATERIALS AND METHODS

[33]

The proposed method adopts the assumption that each soil
sample is obtained from random sampling of effective soil
pore volume from a study area comprising the population.
This assumption is likely to be valid if soil samples are collected
from a study area with no apparent abrupt changes in soil
type. Three sets of laboratory-measured soil water retention
data that appeared to satisfy this requirement were subjected
to the proposed scaling approach. For each data set, parame-
ters ftm , and cr, of the soil water retention model in Eq. [28]
were optimized to fit the soil water retention data using the
nonlinear least squares optimization procedure that is pro-
vided in the spreadsheet program Excel (Wraith and Or, 1998).
Values of hmi and cr/ were determined uniquely for every data
set, even if various initial parameter estimates were used.

The first two data sets (A and B) included soil water reten-
tion curves reported by Carvallo et al. (1976) for 35 soil sam-
ples. Soil samples of a Maddock sandy loam (sandy, mixed
Udorthentic Haploborolls) of 345 cm3 were collected at seven
depths from five plots in a study area of approximately 100
m2 in size. Particle-size distribution data clearly showed differ-
ences in soil texture between the surface and subsurface soil.
Therefore, the soil samples were categorized into two data sets
based on their clay content. Data set A (>8% clay content)
contained soil water retention data for 17 soil samples of the
surface soil, and data set B (<8% clay content) contained
retention data for 18 samples of the subsurface soil.

In the fitting of soil water retention data, the saturated
water content, 6S, was fixed to the observed value and the
residual water content, 6r, was considered a fitting parameter.
Optimized values of 0r were constrained such that their values
were smaller than the minimal observed 6-value, but always
aO. Mean values of 6S and 6r for data set A were 0.390 and
0.173 m3 m~3, respectively, with corresponding standard devia-
tions of 0.021 and 0.036 m3 m~3. Mean 6S and er values for
data set B were 0.396 and 0.088 m3 m~3, respectively, with
corresponding standard deviations of 0.024 and 0.022 m3 m~3.
Since values of both 0S and Or varied between soil samples,
soil water retention data were scaled using effective saturation,

Se, rather than volumetric water content (Clausnitzer et al.,
1992).

The third data set (data set H) included samples of a loamy
sand soil of 100 cm3 collected from six locations at three depths
(30, 60, and 90 cm) in a 2-m2 area in the Hupselse Beek
watershed (Hopmans and Stricker, 1987). A total of 43 soil
samples were analyzed. The parameters hm<i and cr, were fitted
to the Kosugi Se(h) model (Eq. [28]) using the observed reten-
tion data. Following Hopmans and Stricker (1987), 0S was
considered a fitting parameter and 6r was assumed to be zero.
Hence, Se was numerically equal to the degree of saturation.
Mean and standard deviation of 9S were 0.338 and 0.060 m3

m~3, respectively.
The parameters for the reference soil water retention curve

in Eq. [30] for each of the three data sets were directly com-
puted from the mean values of In hmj (Eq. [31]) and cr2 =
Mean(a2). The scaling factors a, were directly computed from
Eq. [32].

Reference soil water retention curves and scaling factors
were also computed from a "brute force" scaling approach,
minimizing the residual sum of squares (RSS) computed from
the effective saturation values of the scaled vs. reference reten-
tion curves for I soil samples and /(;') retention data (conven-
tional method):

RSS = [34]
where S'j is the y'th effective saturation value of soil sample i
with a capillary pressure head of h'J, and Se(a,/z'J) is the effective
saturation obtained from substituting h = a/zy into the refer-
ence soil water retention function that is expressed by Eq.
[30]. This method of scaling is similar to the method used by
Hills et al. (1992), except that the Kosugi retention model was
used instead of the van Genuchten (1980) retention function.
Moreover, we imposed the same constraint expressed by Eq.
[25], requiring the geometric mean of scaling factors to be
unity, while Hills et al. (1992) imposed no constraint. Thus,
in the conventional scaling method, the parameters of the
reference retention curve, In hm and <r2, and scaling factors
are optimized while minimizing RSS, whereas the physically
based approach determines these parameter values directly
from hmj and <r,.

RESULTS AND DISCUSSION

Soil Water Retention Parameters
Values for In hm;i and cr2, which together describe the

soil water retention function of Eq. [28] for each sample
i, are presented in Fig. 3 for all three data sets. The top
horizontal scale in Fig. 3 represents the median pore
radius rm,,, which is related to /zm,, by Eq. [4]. The corre-
sponding mean parameter values, Mean(ln hmj) and
Mean(o-2), are presented in Table 1. The value of
Mean(ln /zm,,) is equal to both In hm, and In hm, represent-
ing the mean of In h for the study area and the reference
soil, respectively. Moreover, Mean(a2) describes the
variance of In h for the reference soil. From Fig. 3 and
Table 1 it can be seen that the soil water retention curves
of data set B are described by the smallest Mean(ln /zmi)
and Mean(cr2) values among the three data sets. Conse-
quently, data set B has the largest median pore radius
and the smallest pore-radius distribution width among
the three data sets. The data and Fig. la in Carvallo et
al. (1976) support the distinct difference in pore-radius
distribution between data sets A and B. Indeed, it is
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Fig. 3. Relationship between the median capillary pressure head (In
/imj.) and the variance (a?) for soil samples of all three data sets.
The median pore-radius, rmj, is related to hmj by Eq. [4].

shown in Fig. 3 that the soil samples of data set A (>8%
clay content) have large In /zm), and of values relative to
those of data set B (<8% clay content). In contrast, the
retention curves of data set H have the smallest median
pore radii and that set's pore-radius distribution width
is the largest (Table 1).

According to the probability plots of In /zm, shown in
Fig. 4, In hm_, values are normally distributed for all three
data sets, supporting the assumptions with regard to the
mean properties of the sampling distribution. Using the
Kolmogorov-Smirnov test, the null (normal) hypothesis
was not rejected at the 0.20 level of significance for any
of the three data sets. The variance values of In hmj,
Var(ln /zm,,), presented in Table 1 were computed from
the slopes of the probability plots in Fig. 4. The variance
of the sample mean values was largest for data set H;
i.e., the variability of soil water retention was largest
for this data set.

Scaling Results
Figures 5 through 7 present the scaling results for all

three data sets, with each of the three figures showing
the unsealed and scaled retention data, and each using
the proposed physically based (PB in Table 2) and con-
ventional (C in Table 2) scaling methods, respectively.
Values of RSS and the obtained parameters of the refer-
ence soil water retention curves are summarized in Ta-
ble 2. Despite the fact that the RSS value for the PB
method is slightly larger than that for the C method,
the PB method produced excellent scaling results for
every data set. The reductions in RSS were 57.8 to 89.2%
and 68.9 to 89.5% for the PB and C methods, respec-
tively. In the physically based approach, all retention
data are scaled using /zm,, data only. Consequently, the
scaled soil water retention data obtained by the PB
method match the reference retention curve at 5e = 0.5
for all data sets (Fig. 5b, 6b, and 7b). In the conventional
approach, all retention data receive equal weight. For

Table 1. Mean parameter values of Eq. [28], the variance of sam-
ple mean values [Var(ln ftm.,)J, and the variance for the study
area (cr«).

Data set Mean(ln hmj) Mean(o'J) Var(ln

A
B
H

3.914
3.393
4.612

1.317
0.268
1.904

0.058 1.375
0.064 0.332
0.112 2.016

t Values of <r; are computed as the sum of Mean(of) and Var(In /imj) (see
Eq. [33]).

every data set, the mean value for the reference soil, In
hm, optimized by the C method is close to its calculated
value using the PB method, whereas the variance for
the reference soil, d2, optimized by the C method is
slightly smaller than the variance calculated by the PB
method (Table 2).

Figure 8 presents the probability plots of In a, using
both the PB and C scaling methods. It can be seen that
a lognormal distribution describes the distribution of
scaling factors for all three data sets and both scaling
methods. The Kolmogorov-Smirnov test did not reject
the null hypothesis, i.e., In a, is normally distributed, at
the 0.20 level of significance for all cases. The statistical
properties (mean and variance) of the lognormal scaling
factor distribution, as computed from the slope and in-
terception of the linear relationship, are summarized in
Table 2. As expected, the variance of In CT, obtained by
the PB method is equal to the variance of In /zmj, (Table
1) for all three data sets. From Fig. 8 and Table 2 it can
be seen that the scaling factor distribution obtained by
the PB method is quite similar to that obtained by the
C method for every data set. The scaling requires that
the mean of In a, be equal to zero in all cases (Eq. [25]),
and the scaling factor distributions are characterized by
the variance of In CT, only.

Most studies (e.g., Warrick et al., 1977; Vachaud et
al., 1985; Hopmans and Overmars, 1987; Clausnitzer et
al., 1992) have shown that scaling factors are approxi-
mately lognormally distributed. The same was true for
all three soil water retention data sets analyzed in this
study. Moreover, it has been demonstrated many times

-4.5 -5.0 -5.5 -6.0 -6.5 -7.0 -7.5

£•o

a
•O
C
IS
tn

• Data set A
o Data set B
a Data set H

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Fig. 4. Fractile diagram of the median capillary pressure head (In /i,,,j)
for all three data sets. The median pore radius, /•„„ is related to
*„,, by Eq. [4].
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a: Unsealed b: Physically-Based

1000
c: Conventional

RSS = 0.101

jl 100

0.0 1.0 0.00.5
S S S

Fig. 5. (a) Unsealed soil water retention data, and scaled soil water retention data using (b) physically based (PB) scaling and (c) conventional
(C) scaling for data set A.

a: Unsealed b: Physically-Based c: Conventional
1000

£. 100 :

1.0 0.0

RSS = 0.109

0.5
S.

1.0 0.0

Fig. 6. (a) Unsealed soil water retention data, and scaled soil water retention data using (b) physically based (PB) scaling and (c) conventional
(C) scaling for data set B.

a: Unsealed b: Physically-Based c: Conventional

1000 j

100 :

RSS = 1.496

1.0 0.0 0.5
S.

1.0 0.0

Fig. 7. (a) Unsealed soil water retention data, and scaled soil water retention data using (b) physically based (PB) scaling and (c) conventional
(C) scaling for data set H.
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Table 2. Residual sum of squares (RSS), parameters for reference retention curves, and statistical properties of scaling factor sets
obtained by the proposed physically based (PB) and conventional (C) scaling methods.

RSS

Data set
A
B
H

PB

0.119
0.109
1.496

C

0.101
0.107
1.101

In

PB

3.914
3.393
4.612

hm *2

C

3.913
3.397
4.601

PB
1.317
0.268
1.904

C

1.286
0.257
1.390

Mean(ln a,)
PB

0
0
0

c
0
0
0

Var(ln a,)
PB

0.058
0.064
0.112

C
0.067
0.065
0.107

that the distribution of the saturated hydraulic conduc-
tivity (Ks) obeys a lognormal distribution (e.g., Kutilek
and Nielsen, 1994; Bierkens, 1996). This result would
also suggest a lognormal distribution of scaling factors,
since the hydraulic conductivity is expected to be pro-
portional to the square of the scaling factor (Jury et al.,
1987). This study proposes an interpretation of these
empirically derived results. That is, a lognormal scaling
factor distribution was derived by assuming that the soil
pore radius of a study area is lognormally distributed
and that individual soil samples are obtained from ran-

C/3

-1.0

-a- Physically-Based • • • • • Conventional
Fig. 8. Fractile diagrams for scale factor distributions using the physi-

cally based and conventional methods for data sets (a) A, (b) B,
and (c) H.

dom sampling of effective soil pore volume from the
study area.

Upscaling of Soil Water Retention Curves
According to Eq. [23], the variance of In h for the

study area, al, is equal to the sum of the expected vari-
ance of In h within soil samples, Mean(of), and the
variance of scaling factors, Var(ln a,), which is equal to
the variance of mean In h values between soil samples,
Var(ln hmjl) (see Eq. [33]). In Fig. 9, the contributions
of Mean(of) and Var(ln a,) to al value for all three data
sets are shown. The al values computed as the sum of
Mean(of) and Var(ln hmii) are summarized in Table 1.
Data sets H and B have the largest and smallest al
values, respectively. In all cases, however, the expected
variance within samples is much larger (81-96% of total
variance) than the variance between samples.

The retention curve for the whole study area ex-
pressed by Eq. [29] can be regarded as the upscaled soil
water retention curve, of which the parameters hm. and
a, are computed from Eq. [31] and [33], respectively.
Others have attempted to derive upscaled parameters
from mostly empirical parameters of the soil water re-
tention curves of individual soil samples (e.g., Yeh and
Harvey, 1990; Green et al., 1996) using different averag-
ing techniques (arithmetic, harmonic, or geometric). In
the proposed physically based approach of Eq. [31], the
parameter hm* is computed from the geometric mean of
/im>i, whereas the variance parameter of the upscaled
retention function, al, is derived from the arithmetic
mean of a] and the variance of In /zmj, (see Eq. [33]). In
contrast to describing the effect of soil heterogeneity
on the water regime in a study area using the Monte
Carlo approach from scaled soil hydraulic properties,
the upscaled soil water retention function expressed by

H
Data set

Fig. 9. Contributions of the expected variance of In h within soil
samples [Mean(a/)] and the variance of scaling factors | Var(ln
a,)] to the study area variance (oi) value for all three data sets.
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Eq. [29] can potentially characterize field effective soil
variability using a single soil water retention curve. Of
course, this would require additional investigations, in-
cluding the upscaling of unsaturated hydraulic conduc-
tivity data and the analysis of spatial correlation be-
tween samples.

SUMMARY AND CONCLUSIONS
A physically based scaling method is proposed that

uses a lognormal pore-size distribution. By using this
method, scaling factors and parameters of the reference
curve are computed directly from the parameters of
individual soil water retention functions, which are the
mean and variance of the log-transformed pore-radius
distribution. The proposed method was compared with
a conventional scaling method for three sets of soil water
retention data and was shown to provide excellent scal-
ing results. The scaling factor distribution obtained by
the proposed method was quite similar to that obtained
by the conventional method.

In contrast to conventional scaling, the physically
based scaling provides a theoretical interpretation of
the lognormal scaling factor distribution with the as-
sumptions that the soil pore radius of a study area is
lognormally distributed and that individual soil samples
are obtained from random sampling of effective soil
pore volume from this study area. The statistical descrip-
tion of a set of soil water retention data is characterized
by the variance of log-transformed scaling factors, which
is defined by the difference of the total variance of the
log-transformed pore radius in the study area and the
expected variance of the log-transformed pore radius
within soil samples. Moreover, physically based scaling
allows upscaling of the physically based parameters of
the soil water retention function, thereby providing a
soil hydraulic parameterization representative of the
whole study area from individual soil samples. As a
result, the physically based scaling can be effectively
used for theoretical studies on spatial variability and
upscaling of soil water retention characteristics.
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APPENDIX A
The variance of the PDF of In r for soil sample i is defined

of = J (In r - In rm,,)2 /(In r)d In r [Al]

which is transformed to

a] = \ (In r - In rm. + In rm» - rm,,)2 /(In r)d In r

( l n r -mr m , ) 2 / ( l n r )d ln r

+ 2(ln rm. - In rm,;) (In r

- In rm.) /(In r)d In r + (In rm. - In rm,,)2 [A2]
The second term in the right hand side of Eq. [A2] can be
written as

2(ln rm. - In rm,,) (In r) /(In r)d In r - In rm.
LJ ——00 J

= -2(ln /v - In rmji)2 [A3]
Substituting Eq. [A3] into [A2] leads to

a2 = (In r - In rm.)2 /(In r)d In r - (In rm, - In rmj,)2

[A4]
Hence

1 1 r /"°°
7 2'=i CT? = - 2Li (In r - In rm,)2 /(In r)d In r
-* -* LJ —oo

- In rm,,)2

or

Mean(oi) = oi — Var(ln rm,)
Consequently, Eq. [A6] is identical to Eq. [19].

[A5]

[A6]

APPENDIX B
A constant in the capillary pressure function given by

Eq. [4], cm2

Fa the normal distribution function
/(In r) probability density function of log-transformed soil

pore radius
g(\n h) probability density function of log-transformed soil

capillary pressure head
h soil capillary pressure head, cm
hm geometric mean and median in the lognormal distri-

bution of soil capillary pressure head, cm
/ total number of soil samples
In hmi mean of In h for soil sample i
In hm, mean of In h for study area (= Mean(ln hmj))
ln/im mean of In h for reference soil
In rmj mean of In r for soil sample i
In rm, mean of In r for study area (= Mean(ln rm,))
In rm mean of In r for reference soil
Mean arithmetic mean operator
p(r) probability density function of soil pore radius, cm"1

r soil pore radius, cm
rm geometric mean and median of the lognormal distri-

bution of soil pore radius, cm
Se effective saturation
Var variance operator
a, scaling factor of soil sample i
6 volumetric soil water content, m3 m~3

0r residual soil water content, m3 m"3

6S saturated soil water content, m3 m~3

cr standard deviation in the normal distribution of both
log-transformed soil pore radius and capillary pres-
sure head

of variance of both In r and In h for soil sample i
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oi variance of both In r and In h for study area [=
Mean(<r,2) + Var(ln /zm,;)]

a2 variance of both In r and In h for reference soil



ERRATUM
Scaling Water Retention Curves for Soils with Lognormal Pore-Size Distribution

K. KOSUGI AND J. W. HOPMANS
Soil Sci. Soc. Am. J. 62:1496-1505 (November-December 1998).

The following is a list of errors found in the paper above.
1. On the right-hand side of Eq. [10], [11], [15], [16], [17], and [27], the square root notation must exclude the

standard deviation parameter, CT.
2. The last sentence of the Physically Based Scaling Approach section on p. 1499 should read:

Using the scaling theory approach as outlined above, the PDF of In r for the reference soil, /(In r), is defined by

3. In the sentence immediately following Eq. [34] on p. 1500, Se(aihij) must be replaced by S/,(a.ihi'i). Moreover,
in the fourth sentence of the Results and Discussion section on p. 1500, In hm must be replaced by In hm.

4. In the second paragraph of the Scaling Results section on p. 1501, all occurrences of In CT; must be replaced
by In a/.

5. In the first integrand of Eq. [A2] in Appendix A, rmj must be replaced by In rmj.
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